Nuprl Lemma : bag-drop-co-restrict

[X:Type]. ∀[eq:EqDecider(X)]. ∀[x:X]. ∀[b:bag(X)].  ((bag-drop(eq;b;x)|¬x) (b|¬x) ∈ bag(X))


Proof




Definitions occuring in Statement :  bag-co-restrict: (b|¬x) bag-drop: bag-drop(eq;bs;a) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] or: P ∨ Q and: P ∧ Q squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A single-bag: {x} cons: [a b] bag-rep: bag-rep(n;x) primrec: primrec(n;b;c) subtract: m cons-bag: x.b nil: [] it: empty-bag: {}
Lemmas referenced :  bag-drop-property equal_wf squash_wf true_wf bag_wf bag-co-restrict_wf subtype_rel_self iff_weakening_equal bag-co-restrict-append single-bag_wf bag-drop_wf bag-append-ident bag-append_wf bag-co-restrict-rep false_wf le_wf empty-bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality unionElimination productElimination applyEquality lambdaEquality imageElimination equalityTransitivity hypothesis equalitySymmetry natural_numberEquality sqequalRule imageMemberEquality baseClosed instantiate independent_isectElimination independent_functionElimination isect_memberEquality axiomEquality applyLambdaEquality hyp_replacement dependent_set_memberEquality independent_pairFormation lambdaFormation

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[x:X].  \mforall{}[b:bag(X)].    ((bag-drop(eq;b;x)|\mneg{}x)  =  (b|\mneg{}x))



Date html generated: 2018_05_21-PM-09_52_56
Last ObjectModification: 2018_05_19-PM-04_21_38

Theory : bags_2


Home Index