Nuprl Lemma : bag-drop-co-restrict
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[x:X]. ∀[b:bag(X)].  ((bag-drop(eq;b;x)|¬x) = (b|¬x) ∈ bag(X))
Proof
Definitions occuring in Statement : 
bag-co-restrict: (b|¬x)
, 
bag-drop: bag-drop(eq;bs;a)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
single-bag: {x}
, 
cons: [a / b]
, 
bag-rep: bag-rep(n;x)
, 
primrec: primrec(n;b;c)
, 
subtract: n - m
, 
cons-bag: x.b
, 
nil: []
, 
it: ⋅
, 
empty-bag: {}
Lemmas referenced : 
bag-drop-property, 
equal_wf, 
squash_wf, 
true_wf, 
bag_wf, 
bag-co-restrict_wf, 
subtype_rel_self, 
iff_weakening_equal, 
bag-co-restrict-append, 
single-bag_wf, 
bag-drop_wf, 
bag-append-ident, 
bag-append_wf, 
bag-co-restrict-rep, 
false_wf, 
le_wf, 
empty-bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
productElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
applyLambdaEquality, 
hyp_replacement, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaFormation
Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[x:X].  \mforall{}[b:bag(X)].    ((bag-drop(eq;b;x)|\mneg{}x)  =  (b|\mneg{}x))
Date html generated:
2018_05_21-PM-09_52_56
Last ObjectModification:
2018_05_19-PM-04_21_38
Theory : bags_2
Home
Index