Step * 5 1 1 of Lemma fps-deriv-compose


1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. X
8. bag(X)
⊢ d<b>(x:=g)/dx ((int-to-ring(r;(#x in b)))*<bag-drop(eq;b;x)>(x:=g)*dg/dx) ∈ PowerSeries(X;r)
BY
((RWO "fps-compose-single-general" THENA Auto) THEN (GenConcl ⌜(g-(g[{}])*1) h ∈ PowerSeries(X;r)⌝⋅ THENA Auto)) }

1
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. X
8. bag(X)
9. PowerSeries(X;r)
10. (g-(g[{}])*1) h ∈ PowerSeries(X;r)
⊢ d(<(b|¬x)>*(h)^(#((b|x))))/dx
((int-to-ring(r;(#x in b)))*(<(bag-drop(eq;b;x)|¬x)>*(h)^(#((bag-drop(eq;b;x)|x))))*dg/dx)
∈ PowerSeries(X;r)


Latex:


Latex:

1.  X  :  Type
2.  valueall-type(X)
3.  eq  :  EqDecider(X)
4.  r  :  CRng
5.  f  :  PowerSeries(X;r)
6.  g  :  PowerSeries(X;r)
7.  x  :  X
8.  b  :  bag(X)
\mvdash{}  d<b>(x:=g)/dx  =  ((int-to-ring(r;(\#x  in  b)))*<bag-drop(eq;b;x)>(x:=g)*dg/dx)


By


Latex:
((RWO  "fps-compose-single-general"  0  THENA  Auto)  THEN  (GenConcl  \mkleeneopen{}(g-(g[\{\}])*1)  =  h\mkleeneclose{}\mcdot{}  THENA  Auto))




Home Index