Step
*
1
1
1
of Lemma
fps-div-coeff_wf
.....wf..... 
1. X : Type
2. eq : EqDecider(X)
3. b1 : bag(X)
4. valueall-type(X)
⊢ bag-partitions(eq;b1) ∈ bag({p:bag(X) × bag(X)| b1 = ((fst(p)) + (snd(p))) ∈ bag(X)} )
BY
{ xxxSubsumeC ⌜bag({b:bag(X) × bag(X)| b ↓∈ bag-partitions(eq;b1)} )⌝⋅xxx }
1
1. X : Type
2. eq : EqDecider(X)
3. b1 : bag(X)
4. valueall-type(X)
⊢ bag-partitions(eq;b1) ∈ bag({b:bag(X) × bag(X)| b ↓∈ bag-partitions(eq;b1)} )
2
1. X : Type
2. eq : EqDecider(X)
3. b1 : bag(X)
4. valueall-type(X)
5. bag-partitions(eq;b1) = bag-partitions(eq;b1) ∈ bag({b:bag(X) × bag(X)| b ↓∈ bag-partitions(eq;b1)} )
⊢ bag({b:bag(X) × bag(X)| b ↓∈ bag-partitions(eq;b1)} ) ⊆r bag({p:bag(X) × bag(X)| b1 = ((fst(p)) + (snd(p))) ∈ bag(X)} \000C)
Latex:
Latex:
.....wf..... 
1.  X  :  Type
2.  eq  :  EqDecider(X)
3.  b1  :  bag(X)
4.  valueall-type(X)
\mvdash{}  bag-partitions(eq;b1)  \mmember{}  bag(\{p:bag(X)  \mtimes{}  bag(X)|  b1  =  ((fst(p))  +  (snd(p)))\}  )
By
Latex:
xxxSubsumeC  \mkleeneopen{}bag(\{b:bag(X)  \mtimes{}  bag(X)|  b  \mdownarrow{}\mmember{}  bag-partitions(eq;b1)\}  )\mkleeneclose{}\mcdot{}xxx
Home
Index