Step
*
2
1
of Lemma
fps-exp-linear-coeff
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. x : X
5. y : X
6. ¬(x = y ∈ X)
7. r : CRng
8. k : |r|
9. m : ℤ
10. 0 < m
11. n : ℕ
12. f : PowerSeries(X;r)
13. ∀[n:ℕ]. ((f bag-rep(n;x)) = if (n =z m - 1) then k ↑r (m - 1) else 0 fi ∈ |r|)
⊢ Σ(p∈bag-partitions(eq;bag-rep(n;x))). * (f (fst(p))) (((k)*atom(x)+atom(y)) (snd(p)))
= if (n =z m) then k ↑r m else 0 fi
∈ |r|
BY
{ TACTIC:(Decide ⌜n = 0 ∈ ℤ⌝⋅ THENA Auto) }
1
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. x : X
5. y : X
6. ¬(x = y ∈ X)
7. r : CRng
8. k : |r|
9. m : ℤ
10. 0 < m
11. n : ℕ
12. f : PowerSeries(X;r)
13. ∀[n:ℕ]. ((f bag-rep(n;x)) = if (n =z m - 1) then k ↑r (m - 1) else 0 fi ∈ |r|)
14. n = 0 ∈ ℤ
⊢ Σ(p∈bag-partitions(eq;bag-rep(n;x))). * (f (fst(p))) (((k)*atom(x)+atom(y)) (snd(p)))
= if (n =z m) then k ↑r m else 0 fi
∈ |r|
2
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. x : X
5. y : X
6. ¬(x = y ∈ X)
7. r : CRng
8. k : |r|
9. m : ℤ
10. 0 < m
11. n : ℕ
12. f : PowerSeries(X;r)
13. ∀[n:ℕ]. ((f bag-rep(n;x)) = if (n =z m - 1) then k ↑r (m - 1) else 0 fi ∈ |r|)
14. ¬(n = 0 ∈ ℤ)
⊢ Σ(p∈bag-partitions(eq;bag-rep(n;x))). * (f (fst(p))) (((k)*atom(x)+atom(y)) (snd(p)))
= if (n =z m) then k ↑r m else 0 fi
∈ |r|
Latex:
Latex:
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. x : X
5. y : X
6. \mneg{}(x = y)
7. r : CRng
8. k : |r|
9. m : \mBbbZ{}
10. 0 < m
11. n : \mBbbN{}
12. f : PowerSeries(X;r)
13. \mforall{}[n:\mBbbN{}]. ((f bag-rep(n;x)) = if (n =\msubz{} m - 1) then k \muparrow{}r (m - 1) else 0 fi )
\mvdash{} \mSigma{}(p\mmember{}bag-partitions(eq;bag-rep(n;x))). * (f (fst(p))) (((k)*atom(x)+atom(y)) (snd(p)))
= if (n =\msubz{} m) then k \muparrow{}r m else 0 fi
By
Latex:
TACTIC:(Decide \mkleeneopen{}n = 0\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index