Nuprl Lemma : fps-exp-linear-coeff

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[x,y:X].
    ∀[r:CRng]. ∀[k:|r|]. ∀[m,n:ℕ].
      ((((k)*atom(x)+atom(y)))^(m)[bag-rep(n;x)] if (n =z m) then k ↑else fi  ∈ |r|) 
    supposing ¬(x y ∈ X) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-exp: (f)^(n) fps-scalar-mul: (c)*f fps-add: (f+g) fps-atom: atom(x) fps-coeff: f[b] bag-rep: bag-rep(n;x) deq: EqDecider(T) nat: valueall-type: valueall-type(T) ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T rng_nexp: e ↑n crng: CRng rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: crng: CRng rng: Rng fps-coeff: f[b] fps-one: 1 int_upper: {i...} assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q bfalse: ff less_than': less_than'(a;b) le: A ≤ B uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 true: True subtype_rel: A ⊆B squash: T iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) fps-mul: (f*g) bag-partitions: bag-partitions(eq;bs) callbyvalueall: callbyvalueall evalall: evalall(t) bag-splits: bag-splits(b) list_ind: list_ind bag-rep: bag-rep(n;x) primrec: primrec(n;b;c) empty-bag: {} nil: [] single-bag: {x} cons: [a b] bag-to-set: bag-to-set(eq;bs) bag-remove-repeats: bag-remove-repeats(eq;bs) list-to-set: list-to-set(eq;L) l-union: as ⋃ bs reduce: reduce(f;k;as) insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L cand: c∧ B so_lambda: λ2x.t[x] power-series: PowerSeries(X;r) pi1: fst(t) pi2: snd(t) so_apply: x[s] ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv) fps-atom: atom(x) fps-scalar-mul: (c)*f fps-add: (f+g) fps-single: <c> bag-eq: bag-eq(eq;as;bs) bag-count: (#x in bs) bag-all: bag-all(x.p[x];bs) count: count(P;L) bag-map: bag-map(f;bs) bag-reduce: bag-reduce(x,y.f[x; y];zero;bs) lt_int: i <j band: p ∧b q infix_ap: y respects-equality: respects-equality(S;T) bag-size: #(bs) length: ||as|| rev_uimplies: rev_uimplies(P;Q) nequal: a ≠ b ∈  nat_plus: + less_than: a < b
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than subtract-1-ge-0 istype-nat rng_car_wf crng_wf deq_wf valueall-type_wf istype-universe rng_nexp_zero bag-null-rep rng_zero_wf zero-add nequal-le-implies upper_subtype_nat neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert le_wf false_wf rng_nexp_wf assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf list-subtype-bag bag-rep_wf fps-atom_wf fps-scalar-mul_wf fps-add_wf squash_wf true_wf fps-coeff_wf bag_wf power-series_wf fps-exp-zero subtype_rel_self iff_weakening_equal subtract-add-cancel subtract_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma istype-le istype-false intformeq_wf int_formula_prop_eq_lemma fps-exp_wf fps-exp-add fps-mul_wf fps-exp-one decidable__equal_int int_subtype_base bag-summation-single rng_plus_wf rng_plus_comm2 rng_times_wf empty-bag_wf crng_properties rng_properties reduce_nil_lemma reduce_cons_lemma map_nil_lemma map_cons_lemma nil_wf rng_times_over_plus rng_times_zero rng_plus_zero bag-summation-single-non-zero-no-repeats product-deq_wf bag-deq_wf bag-partitions_wf bag-member_wf bag-member-partitions bag-size_wf bag-append-equal-bag-rep add-is-int-iff itermAdd_wf int_term_value_add_lemma respects-equality-product list_wf subtype-respects-equality bag_qinc bag-eq_wf single-bag_wf assert-bag-eq equal-wf-base set_subtype_base iff_weakening_uiff assert_wf no-repeats-bag-partitions bag-rep-add bag-summation_wf crng_all_properties int_upper_properties rng_nexp_unroll primrec1_lemma cons_bag_empty_lemma member_wf rng_one_wf rng_times_one rng_plus_comm single-valued-bag-single single-valued-bag_wf bag-only_wf2 bag_only_single_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies because_Cache functionIsType equalityIstype instantiate universeEquality voidEquality isect_memberEquality hypothesis_subsumption cumulativity promote_hyp dependent_pairFormation equalitySymmetry equalityTransitivity dependent_set_memberEquality productElimination equalityElimination unionElimination lambdaFormation lambdaEquality applyEquality imageElimination imageMemberEquality baseClosed dependent_set_memberEquality_alt addEquality closedConclusion isectIsType intEquality productEquality productIsType independent_pairEquality inlFormation_alt pointwiseFunctionality baseApply inrFormation_alt sqequalBase hyp_replacement applyLambdaEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[x,y:X].
        \mforall{}[r:CRng].  \mforall{}[k:|r|].  \mforall{}[m,n:\mBbbN{}].
            ((((k)*atom(x)+atom(y)))\^{}(m)[bag-rep(n;x)]  =  if  (n  =\msubz{}  m)  then  k  \muparrow{}r  m  else  0  fi  ) 
        supposing  \mneg{}(x  =  y) 
    supposing  valueall-type(X)



Date html generated: 2019_10_16-AM-11_34_54
Last ObjectModification: 2018_11_26-PM-03_09_25

Theory : power!series


Home Index