Nuprl Lemma : bag-null-rep
∀[n:ℕ]. ∀[x:Top].  (bag-null(bag-rep(n;x)) ~ (n =z 0))
Proof
Definitions occuring in Statement : 
bag-rep: bag-rep(n;x)
, 
bag-null: bag-null(bs)
, 
nat: ℕ
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
top: Top
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
bag-null_wf, 
top_wf, 
bag-rep_wf, 
eq_int_wf, 
subtype_base_sq, 
bool_subtype_base, 
null-bag-size, 
list-subtype-bag, 
bag-size-rep, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
setElimination, 
rename, 
natural_numberEquality, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:Top].    (bag-null(bag-rep(n;x))  \msim{}  (n  =\msubz{}  0))
Date html generated:
2016_05_15-PM-02_34_09
Last ObjectModification:
2015_12_27-AM-09_46_45
Theory : bags
Home
Index