Nuprl Lemma : bag-null-rep

[n:ℕ]. ∀[x:Top].  (bag-null(bag-rep(n;x)) (n =z 0))


Proof




Definitions occuring in Statement :  bag-rep: bag-rep(n;x) bag-null: bag-null(bs) nat: eq_int: (i =z j) uall: [x:A]. B[x] top: Top natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B nat: uimplies: supposing a top: Top sq_type: SQType(T) implies:  Q guard: {T}
Lemmas referenced :  bag-null_wf top_wf bag-rep_wf eq_int_wf subtype_base_sq bool_subtype_base null-bag-size list-subtype-bag bag-size-rep nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis isectElimination hypothesisEquality applyEquality because_Cache sqequalRule setElimination rename natural_numberEquality instantiate independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:Top].    (bag-null(bag-rep(n;x))  \msim{}  (n  =\msubz{}  0))



Date html generated: 2016_05_15-PM-02_34_09
Last ObjectModification: 2015_12_27-AM-09_46_45

Theory : bags


Home Index