Step
*
2
1
1
2
1
1
1
of Lemma
fps-geometric-slice_lemma2
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. n : ℕ+
6. m : ℕn
7. ¬(m = 0 ∈ ℤ)
8. g : PowerSeries(X;r)
9. g = [g]_n ∈ PowerSeries(X;r)
10. IsRing(PowerSeries(X;r);λf,g. (f+g);0;λf.-(f);λf,g. (f*g);1)
11. 0 = fps-summation(r;upto(m + 1);k.([(1-g)]_k*[(1÷(1-g))]_m - k)) ∈ PowerSeries(X;r)
⊢ filter(λk.(k =z 0);upto(m + 1)) ~ [0]
BY
{ ((Unfold `upto` 0 THEN RecUnfold `from-upto` 0 THEN AutoSplit) THEN EqCD) }
1
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. n : ℕ+
6. m : ℕn
7. ¬(m = 0 ∈ ℤ)
8. g : PowerSeries(X;r)
9. g = [g]_n ∈ PowerSeries(X;r)
10. IsRing(PowerSeries(X;r);λf,g. (f+g);0;λf.-(f);λf,g. (f*g);1)
11. 0 = fps-summation(r;upto(m + 1);k.([(1-g)]_k*[(1÷(1-g))]_m - k)) ∈ PowerSeries(X;r)
12. 0 < m + 1
⊢ 0 ~ 0
2
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. n : ℕ+
6. m : ℕn
7. ¬(m = 0 ∈ ℤ)
8. g : PowerSeries(X;r)
9. g = [g]_n ∈ PowerSeries(X;r)
10. IsRing(PowerSeries(X;r);λf,g. (f+g);0;λf.-(f);λf,g. (f*g);1)
11. 0 = fps-summation(r;upto(m + 1);k.([(1-g)]_k*[(1÷(1-g))]_m - k)) ∈ PowerSeries(X;r)
12. 0 < m + 1
⊢ filter(λk.(k =z 0);[1, m + 1)) ~ []
Latex:
Latex:
1.  X  :  Type
2.  valueall-type(X)
3.  eq  :  EqDecider(X)
4.  r  :  CRng
5.  n  :  \mBbbN{}\msupplus{}
6.  m  :  \mBbbN{}n
7.  \mneg{}(m  =  0)
8.  g  :  PowerSeries(X;r)
9.  g  =  [g]\_n
10.  IsRing(PowerSeries(X;r);\mlambda{}f,g.  (f+g);0;\mlambda{}f.-(f);\mlambda{}f,g.  (f*g);1)
11.  0  =  fps-summation(r;upto(m  +  1);k.([(1-g)]\_k*[(1\mdiv{}(1-g))]\_m  -  k))
\mvdash{}  filter(\mlambda{}k.(k  =\msubz{}  0);upto(m  +  1))  \msim{}  [0]
By
Latex:
((Unfold  `upto`  0  THEN  RecUnfold  `from-upto`  0  THEN  AutoSplit)  THEN  EqCD)
Home
Index