Step * 2 1 1 2 1 1 1 of Lemma fps-geometric-slice_lemma2


1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. : ℕ+
6. : ℕn
7. ¬(m 0 ∈ ℤ)
8. PowerSeries(X;r)
9. [g]_n ∈ PowerSeries(X;r)
10. IsRing(PowerSeries(X;r);λf,g. (f+g);0;λf.-(f);λf,g. (f*g);1)
11. fps-summation(r;upto(m 1);k.([(1-g)]_k*[(1÷(1-g))]_m k)) ∈ PowerSeries(X;r)
⊢ filter(λk.(k =z 0);upto(m 1)) [0]
BY
((Unfold `upto` THEN RecUnfold `from-upto` THEN AutoSplit) THEN EqCD) }

1
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. : ℕ+
6. : ℕn
7. ¬(m 0 ∈ ℤ)
8. PowerSeries(X;r)
9. [g]_n ∈ PowerSeries(X;r)
10. IsRing(PowerSeries(X;r);λf,g. (f+g);0;λf.-(f);λf,g. (f*g);1)
11. fps-summation(r;upto(m 1);k.([(1-g)]_k*[(1÷(1-g))]_m k)) ∈ PowerSeries(X;r)
12. 0 < 1
⊢ 0

2
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. : ℕ+
6. : ℕn
7. ¬(m 0 ∈ ℤ)
8. PowerSeries(X;r)
9. [g]_n ∈ PowerSeries(X;r)
10. IsRing(PowerSeries(X;r);λf,g. (f+g);0;λf.-(f);λf,g. (f*g);1)
11. fps-summation(r;upto(m 1);k.([(1-g)]_k*[(1÷(1-g))]_m k)) ∈ PowerSeries(X;r)
12. 0 < 1
⊢ filter(λk.(k =z 0);[1, 1)) []


Latex:


Latex:

1.  X  :  Type
2.  valueall-type(X)
3.  eq  :  EqDecider(X)
4.  r  :  CRng
5.  n  :  \mBbbN{}\msupplus{}
6.  m  :  \mBbbN{}n
7.  \mneg{}(m  =  0)
8.  g  :  PowerSeries(X;r)
9.  g  =  [g]\_n
10.  IsRing(PowerSeries(X;r);\mlambda{}f,g.  (f+g);0;\mlambda{}f.-(f);\mlambda{}f,g.  (f*g);1)
11.  0  =  fps-summation(r;upto(m  +  1);k.([(1-g)]\_k*[(1\mdiv{}(1-g))]\_m  -  k))
\mvdash{}  filter(\mlambda{}k.(k  =\msubz{}  0);upto(m  +  1))  \msim{}  [0]


By


Latex:
((Unfold  `upto`  0  THEN  RecUnfold  `from-upto`  0  THEN  AutoSplit)  THEN  EqCD)




Home Index