Step
*
1
1
of Lemma
fps-geometric-slice
.....assertion.....
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. m : ℕ
6. ∀m:ℕm
∀[n:ℕ+]. ∀[g:PowerSeries(X;r)].
[(1÷(1-g))]_m = if (m rem n =z 0) then (g)^(m ÷ n) else 0 fi ∈ PowerSeries(X;r)
supposing g = [g]_n ∈ PowerSeries(X;r)
7. n : ℕ+
8. g : PowerSeries(X;r)
9. g = [g]_n ∈ PowerSeries(X;r)
10. m < n
11. ∀[m:ℕn]. ∀[g:PowerSeries(X;r)].
[(1÷(1-g))]_m = if (m =z 0) then 1 else 0 fi ∈ PowerSeries(X;r) supposing g = [g]_n ∈ PowerSeries(X;r)
⊢ ((m rem n) = m ∈ ℤ) ∧ ((m ÷ n) = 0 ∈ ℤ)
BY
{ ThinVar `r' }
1
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. m : ℕ
5. n : ℕ+
6. m < n
⊢ ((m rem n) = m ∈ ℤ) ∧ ((m ÷ n) = 0 ∈ ℤ)
Latex:
Latex:
.....assertion.....
1. X : Type
2. valueall-type(X)
3. eq : EqDecider(X)
4. r : CRng
5. m : \mBbbN{}
6. \mforall{}m:\mBbbN{}m
\mforall{}[n:\mBbbN{}\msupplus{}]. \mforall{}[g:PowerSeries(X;r)].
[(1\mdiv{}(1-g))]\_m = if (m rem n =\msubz{} 0) then (g)\^{}(m \mdiv{} n) else 0 fi supposing g = [g]\_n
7. n : \mBbbN{}\msupplus{}
8. g : PowerSeries(X;r)
9. g = [g]\_n
10. m < n
11. \mforall{}[m:\mBbbN{}n]. \mforall{}[g:PowerSeries(X;r)].
[(1\mdiv{}(1-g))]\_m = if (m =\msubz{} 0) then 1 else 0 fi supposing g = [g]\_n
\mvdash{} ((m rem n) = m) \mwedge{} ((m \mdiv{} n) = 0)
By
Latex:
ThinVar `r'
Home
Index