Nuprl Lemma : dim-qv-mul
∀[as:Top List]. ∀[r:Top].  (dimension(qv-mul(r;as)) ~ dimension(as))
Proof
Definitions occuring in Statement : 
qv-mul: qv-mul(r;bs)
, 
qv-dim: dimension(as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
qv-dim: dimension(as)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qv-mul: qv-mul(r;bs)
, 
top: Top
Lemmas referenced : 
length-map, 
top_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom
Latex:
\mforall{}[as:Top  List].  \mforall{}[r:Top].    (dimension(qv-mul(r;as))  \msim{}  dimension(as))
Date html generated:
2016_05_15-PM-11_20_53
Last ObjectModification:
2015_12_27-PM-07_32_58
Theory : rationals
Home
Index