Nuprl Lemma : dim-qv-mul
∀[as:Top List]. ∀[r:Top]. (dimension(qv-mul(r;as)) ~ dimension(as))
Proof
Definitions occuring in Statement :
qv-mul: qv-mul(r;bs)
,
qv-dim: dimension(as)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
qv-dim: dimension(as)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
qv-mul: qv-mul(r;bs)
,
top: Top
Lemmas referenced :
length-map,
top_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
because_Cache,
hypothesisEquality,
hypothesis,
sqequalAxiom
Latex:
\mforall{}[as:Top List]. \mforall{}[r:Top]. (dimension(qv-mul(r;as)) \msim{} dimension(as))
Date html generated:
2016_05_15-PM-11_20_53
Last ObjectModification:
2015_12_27-PM-07_32_58
Theory : rationals
Home
Index