Nuprl Lemma : dim-qv-mul

[as:Top List]. ∀[r:Top].  (dimension(qv-mul(r;as)) dimension(as))


Proof




Definitions occuring in Statement :  qv-mul: qv-mul(r;bs) qv-dim: dimension(as) list: List uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  qv-dim: dimension(as) uall: [x:A]. B[x] member: t ∈ T qv-mul: qv-mul(r;bs) top: Top
Lemmas referenced :  length-map top_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality because_Cache hypothesisEquality hypothesis sqequalAxiom

Latex:
\mforall{}[as:Top  List].  \mforall{}[r:Top].    (dimension(qv-mul(r;as))  \msim{}  dimension(as))



Date html generated: 2016_05_15-PM-11_20_53
Last ObjectModification: 2015_12_27-PM-07_32_58

Theory : rationals


Home Index