Nuprl Lemma : qinv_id_q

-(0) 0 ∈ ℚ


Proof




Definitions occuring in Statement :  qmul: s rationals: minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) grp_inv: ~ pi2: snd(t) grp_id: e
Lemmas referenced :  grp_inv_id qadd_grp_wf grp_subtype_igrp abgrp_subtype_grp subtype_rel_transitivity abgrp_wf grp_wf igrp_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality instantiate independent_isectElimination sqequalRule

Latex:
-(0)  =  0



Date html generated: 2020_05_20-AM-09_13_58
Last ObjectModification: 2020_02_04-PM-01_59_22

Theory : rationals


Home Index