Nuprl Lemma : qless_is_sp_of_leq_a_qorder
∀[a,b:ℚ].  uiff(a < b;(a ≤ b) ∧ (¬(b ≤ a)))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qless: r < s
, 
rationals: ℚ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
qadd_grp: <ℚ+>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
qle: r ≤ s
, 
qless: r < s
Lemmas referenced : 
grp_lt_is_sp_of_leq_a, 
qadd_grp_wf2, 
ocmon_subtype_omon, 
ocgrp_subtype_ocmon, 
subtype_rel_transitivity, 
ocgrp_wf, 
ocmon_wf, 
omon_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule
Latex:
\mforall{}[a,b:\mBbbQ{}].    uiff(a  <  b;(a  \mleq{}  b)  \mwedge{}  (\mneg{}(b  \mleq{}  a)))
Date html generated:
2020_05_20-AM-09_14_26
Last ObjectModification:
2020_02_01-AM-11_22_15
Theory : rationals
Home
Index