Nuprl Lemma : qless_is_sp_of_leq_a_qorder

[a,b:ℚ].  uiff(a < b;(a ≤ b) ∧ (b ≤ a)))


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) qle: r ≤ s qless: r < s
Lemmas referenced :  grp_lt_is_sp_of_leq_a qadd_grp_wf2 ocmon_subtype_omon ocgrp_subtype_ocmon subtype_rel_transitivity ocgrp_wf ocmon_wf omon_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality instantiate independent_isectElimination sqequalRule

Latex:
\mforall{}[a,b:\mBbbQ{}].    uiff(a  <  b;(a  \mleq{}  b)  \mwedge{}  (\mneg{}(b  \mleq{}  a)))



Date html generated: 2020_05_20-AM-09_14_26
Last ObjectModification: 2020_02_01-AM-11_22_15

Theory : rationals


Home Index