Nuprl Lemma : sum_plus_q

[a,b:ℤ].  ∀[E,F:{a..b-} ⟶ ℚ].  a ≤ i < b. E[i] F[i] a ≤ i < b. E[i] + Σa ≤ i < b. F[i]) ∈ ℚsupposing a ≤ b


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qadd: s rationals: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) infix_ap: y qsum: Σa ≤ j < b. E[j]
Lemmas referenced :  rng_sum_plus qrng_wf crng_subtype_rng
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[a,b:\mBbbZ{}].
    \mforall{}[E,F:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].    (\mSigma{}a  \mleq{}  i  <  b.  E[i]  +  F[i]  =  (\mSigma{}a  \mleq{}  i  <  b.  E[i]  +  \mSigma{}a  \mleq{}  i  <  b.  F[i])) 
    supposing  a  \mleq{}  b



Date html generated: 2020_05_20-AM-09_25_29
Last ObjectModification: 2020_01_26-AM-11_19_57

Theory : rationals


Home Index