Nuprl Lemma : functor_cat_arrow_lemma
∀G,F,B,A:Top.  (cat-arrow(FUN(A;B)) F G ~ nat-trans(A;B;F;G))
Proof
Definitions occuring in Statement : 
functor-cat: FUN(C1;C2)
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-arrow: cat-arrow(C)
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
functor-cat: FUN(C1;C2)
, 
top: Top
Lemmas referenced : 
top_wf, 
cat_arrow_triple_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}G,F,B,A:Top.    (cat-arrow(FUN(A;B))  F  G  \msim{}  nat-trans(A;B;F;G))
Date html generated:
2020_05_20-AM-07_51_58
Last ObjectModification:
2017_01_09-PM-05_18_32
Theory : small!categories
Home
Index