Nuprl Lemma : functor_cat_arrow_lemma

G,F,B,A:Top.  (cat-arrow(FUN(A;B)) nat-trans(A;B;F;G))


Proof




Definitions occuring in Statement :  functor-cat: FUN(C1;C2) nat-trans: nat-trans(C;D;F;G) cat-arrow: cat-arrow(C) top: Top all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T functor-cat: FUN(C1;C2) top: Top
Lemmas referenced :  top_wf cat_arrow_triple_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}G,F,B,A:Top.    (cat-arrow(FUN(A;B))  F  G  \msim{}  nat-trans(A;B;F;G))



Date html generated: 2020_05_20-AM-07_51_58
Last ObjectModification: 2017_01_09-PM-05_18_32

Theory : small!categories


Home Index