Nuprl Lemma : functor_cat_id_lemma

F,B,A:Top.  (cat-id(FUN(A;B)) identity-trans(A;B;F))


Proof




Definitions occuring in Statement :  functor-cat: FUN(C1;C2) identity-trans: identity-trans(C;D;F) cat-id: cat-id(C) top: Top all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T functor-cat: FUN(C1;C2) top: Top
Lemmas referenced :  top_wf cat_id_tuple_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}F,B,A:Top.    (cat-id(FUN(A;B))  F  \msim{}  identity-trans(A;B;F))



Date html generated: 2020_05_20-AM-07_52_00
Last ObjectModification: 2017_01_12-AM-11_08_37

Theory : small!categories


Home Index