Nuprl Lemma : functor_cat_ob_lemma

B,A:Top.  (cat-ob(FUN(A;B)) Functor(A;B))


Proof




Definitions occuring in Statement :  functor-cat: FUN(C1;C2) cat-functor: Functor(C1;C2) cat-ob: cat-ob(C) top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T functor-cat: FUN(C1;C2) top: Top
Lemmas referenced :  top_wf cat_ob_pair_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}B,A:Top.    (cat-ob(FUN(A;B))  \msim{}  Functor(A;B))



Date html generated: 2020_05_20-AM-07_51_56
Last ObjectModification: 2017_01_09-PM-05_13_44

Theory : small!categories


Home Index