Nuprl Lemma : functor_cat_ob_lemma
∀B,A:Top.  (cat-ob(FUN(A;B)) ~ Functor(A;B))
Proof
Definitions occuring in Statement : 
functor-cat: FUN(C1;C2)
, 
cat-functor: Functor(C1;C2)
, 
cat-ob: cat-ob(C)
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
functor-cat: FUN(C1;C2)
, 
top: Top
Lemmas referenced : 
top_wf, 
cat_ob_pair_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}B,A:Top.    (cat-ob(FUN(A;B))  \msim{}  Functor(A;B))
Date html generated:
2020_05_20-AM-07_51_56
Last ObjectModification:
2017_01_09-PM-05_13_44
Theory : small!categories
Home
Index