Nuprl Lemma : op-cat-id
∀C:SmallCategory. ∀[A:Top]. (cat-id(op-cat(C)) A ~ cat-id(C) A)
Proof
Definitions occuring in Statement : 
op-cat: op-cat(C)
, 
cat-id: cat-id(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
small-category: SmallCategory
, 
spreadn: spread4, 
op-cat: op-cat(C)
, 
top: Top
Lemmas referenced : 
cat_id_tuple_lemma, 
top_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
axiomSqEquality
Latex:
\mforall{}C:SmallCategory.  \mforall{}[A:Top].  (cat-id(op-cat(C))  A  \msim{}  cat-id(C)  A)
Date html generated:
2020_05_20-AM-07_52_16
Last ObjectModification:
2017_10_03-PM-00_26_36
Theory : small!categories
Home
Index