Nuprl Lemma : append-append-nil
∀[x:Top]. ((x @ []) @ [] ~ x @ [])
Proof
Definitions occuring in Statement : 
append: as @ bs
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
top_wf, 
list_ind_nil_lemma, 
append_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination
Latex:
\mforall{}[x:Top].  ((x  @  [])  @  []  \msim{}  x  @  [])
Date html generated:
2016_05_15-PM-02_07_52
Last ObjectModification:
2015_12_27-AM-00_36_54
Theory : untyped!computation
Home
Index