Nuprl Lemma : append-append-nil

[x:Top]. ((x []) [] [])


Proof




Definitions occuring in Statement :  append: as bs nil: [] uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_nil_lemma append_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom lemma_by_obid hypothesisEquality isect_memberEquality voidElimination voidEquality sqequalRule sqequalHypSubstitution dependent_functionElimination thin isectElimination

Latex:
\mforall{}[x:Top].  ((x  @  [])  @  []  \msim{}  x  @  [])



Date html generated: 2016_05_15-PM-02_07_52
Last ObjectModification: 2015_12_27-AM-00_36_54

Theory : untyped!computation


Home Index