Nuprl Lemma : strictness-ifthenelse

[a,b:Top].  (if ⊥ then else fi  ~ ⊥)


Proof




Definitions occuring in Statement :  bottom: ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ifthenelse: if then else fi  so_lambda: λ2x.t[x] top: Top so_apply: x[s]
Lemmas referenced :  strictness-decide bottom-sqle top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis because_Cache sqequalAxiom hypothesisEquality

Latex:
\mforall{}[a,b:Top].    (if  \mbot{}  then  a  else  b  fi    \msim{}  \mbot{})



Date html generated: 2016_05_15-PM-02_07_26
Last ObjectModification: 2015_12_27-AM-00_37_25

Theory : untyped!computation


Home Index