Nuprl Lemma : strictness-ifthenelse
∀[a,b:Top].  (if ⊥ then a else b fi  ~ ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ifthenelse: if b then t else f fi 
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
Lemmas referenced : 
strictness-decide, 
bottom-sqle, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
because_Cache, 
sqequalAxiom, 
hypothesisEquality
Latex:
\mforall{}[a,b:Top].    (if  \mbot{}  then  a  else  b  fi    \msim{}  \mbot{})
Date html generated:
2016_05_15-PM-02_07_26
Last ObjectModification:
2015_12_27-AM-00_37_25
Theory : untyped!computation
Home
Index