Nuprl Lemma : strictness-decide

[F,G:Top].  (case ⊥ of inl(x) => F[x] inr(x) => G[x] ~ ⊥)


Proof




Definitions occuring in Statement :  bottom: uall: [x:A]. B[x] top: Top so_apply: x[s] decide: case of inl(x) => s[x] inr(y) => t[y] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ all: x:A. B[x] or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  btrue: tt not: ¬A false: False bfalse: ff top: Top
Lemmas referenced :  injection-eta isl_wf top_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert bottom_diverge value-type-has-value union-value-type eqff_to_assert assert_of_bnot exception-not-bottom has-value_wf_base is-exception_wf bottom-sqle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle callbyvalueDecide sqequalHypSubstitution hypothesis baseClosed extract_by_obid dependent_functionElimination equalityTransitivity equalitySymmetry isectElimination because_Cache unionElimination instantiate cumulativity independent_isectElimination independent_functionElimination productElimination sqequalRule voidElimination decideExceptionCases axiomSqleEquality unionEquality baseApply closedConclusion hypothesisEquality sqleReflexivity isect_memberEquality voidEquality sqequalAxiom

Latex:
\mforall{}[F,G:Top].    (case  \mbot{}  of  inl(x)  =>  F[x]  |  inr(x)  =>  G[x]  \msim{}  \mbot{})



Date html generated: 2018_05_21-PM-00_02_19
Last ObjectModification: 2018_05_19-AM-07_12_51

Theory : computation


Home Index