Nuprl Lemma : strictness-isr
isr(⊥) ~ ⊥
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
isr: isr(x)
, 
sqequal: s ~ t
Definitions unfolded in proof : 
isr: isr(x)
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s]
Lemmas referenced : 
strictness-decide
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis
Latex:
isr(\mbot{})  \msim{}  \mbot{}
Date html generated:
2016_05_15-PM-02_07_33
Last ObjectModification:
2015_12_27-AM-00_37_24
Theory : untyped!computation
Home
Index