Nuprl Lemma : mon_when_hom_swap
∀[g,h:GrpSig]. ∀[f:MonHom(g,h)]. ∀[b:𝔹]. ∀[p:|g|].  ((when b. (f p)) = (f (when b. p)) ∈ |h|)
Proof
Definitions occuring in Statement : 
mon_when: when b. p, 
monoid_hom: MonHom(M1,M2), 
grp_car: |g|, 
grp_sig: GrpSig, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
mon_when: when b. p, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
prop: ℙ, 
monoid_hom: MonHom(M1,M2), 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
grp_car_wf, 
monoid_hom_wf, 
grp_sig_wf, 
squash_wf, 
true_wf, 
grp_id_wf, 
monoid_hom_id, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
baseClosed, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
applyEquality, 
setElimination, 
rename, 
lambdaEquality, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}[g,h:GrpSig].  \mforall{}[f:MonHom(g,h)].  \mforall{}[b:\mBbbB{}].  \mforall{}[p:|g|].    ((when  b.  (f  p))  =  (f  (when  b.  p)))
Date html generated:
2017_10_01-AM-08_17_17
Last ObjectModification:
2017_02_28-PM-02_02_49
Theory : groups_1
Home
Index