Nuprl Lemma : imonomial-term-add-ringeq
∀r:Rng. ∀vs:ℤ List. ∀a,b:ℤ-o. ∀f:ℤ ⟶ |r|.  ((ring_term_value(f;imonomial-term(<a, vs>)) +r ring_term_value(f;imonomial-\000Cterm(<b, vs>))) = ring_term_value(f;imonomial-term(<a + b, vs>)) ∈ |r|)
Proof
Definitions occuring in Statement : 
ring_term_value: ring_term_value(f;t)
, 
rng: Rng
, 
rng_plus: +r
, 
rng_car: |r|
, 
imonomial-term: imonomial-term(m)
, 
list: T List
, 
int_nzero: ℤ-o
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
infix_ap: x f y
, 
squash: ↓T
, 
true: True
, 
int_nzero: ℤ-o
, 
rng: Rng
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
rng_times_over_plus, 
iff_weakening_equal, 
int-to-ring-add, 
imonomial-term_wf, 
ring_term_value_wf, 
int-to-ring_wf, 
rng_times_wf, 
infix_ap_wf, 
equal_wf, 
rng_plus_wf, 
rng_wf, 
list_wf, 
int_nzero_wf, 
rng_car_wf, 
squash_wf, 
true_wf, 
imonomial-term-linear-ringeq
Rules used in proof : 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
independent_pairEquality, 
functionExtensionality, 
imageElimination, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
addEquality, 
because_Cache, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
intEquality, 
functionEquality, 
hypothesis, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
universeEquality, 
dependent_functionElimination
Latex:
\mforall{}r:Rng.  \mforall{}vs:\mBbbZ{}  List.  \mforall{}a,b:\mBbbZ{}\msupminus{}\msupzero{}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  |r|.
    ((ring\_term\_value(f;imonomial-term(<a,  vs>))  +r  ring\_term\_value(f;imonomial-term(<b,  vs>)))  =  ring\000C\_term\_value(f;imonomial-term(<a  +  b,  vs>)))
Date html generated:
2018_05_21-PM-03_16_28
Last ObjectModification:
2018_01_25-PM-02_19_38
Theory : rings_1
Home
Index