Nuprl Lemma : imonomial-term-add-ringeq

r:Rng. ∀vs:ℤ List. ∀a,b:ℤ-o. ∀f:ℤ ⟶ |r|.  ((ring_term_value(f;imonomial-term(<a, vs>)) +r ring_term_value(f;imonomial-\000Cterm(<b, vs>))) ring_term_value(f;imonomial-term(<b, vs>)) ∈ |r|)


Proof




Definitions occuring in Statement :  ring_term_value: ring_term_value(f;t) rng: Rng rng_plus: +r rng_car: |r| imonomial-term: imonomial-term(m) list: List int_nzero: -o infix_ap: y all: x:A. B[x] function: x:A ⟶ B[x] pair: <a, b> add: m int: equal: t ∈ T
Definitions unfolded in proof :  implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B infix_ap: y squash: T true: True int_nzero: -o rng: Rng uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] prop:
Lemmas referenced :  rng_times_over_plus iff_weakening_equal int-to-ring-add imonomial-term_wf ring_term_value_wf int-to-ring_wf rng_times_wf infix_ap_wf equal_wf rng_plus_wf rng_wf list_wf int_nzero_wf rng_car_wf squash_wf true_wf imonomial-term-linear-ringeq
Rules used in proof :  independent_functionElimination productElimination independent_isectElimination equalitySymmetry equalityTransitivity baseClosed imageMemberEquality sqequalRule independent_pairEquality functionExtensionality imageElimination lambdaEquality applyEquality natural_numberEquality addEquality because_Cache hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction intEquality functionEquality hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution universeEquality dependent_functionElimination

Latex:
\mforall{}r:Rng.  \mforall{}vs:\mBbbZ{}  List.  \mforall{}a,b:\mBbbZ{}\msupminus{}\msupzero{}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  |r|.
    ((ring\_term\_value(f;imonomial-term(<a,  vs>))  +r  ring\_term\_value(f;imonomial-term(<b,  vs>)))  =  ring\000C\_term\_value(f;imonomial-term(<a  +  b,  vs>)))



Date html generated: 2018_05_21-PM-03_16_28
Last ObjectModification: 2018_01_25-PM-02_19_38

Theory : rings_1


Home Index