Nuprl Lemma : int-to-ring-add
∀[r:Rng]. ∀[a1,a2:ℤ].  (int-to-ring(r;a1 + a2) = (int-to-ring(r;a1) +r int-to-ring(r;a2)) ∈ |r|)
Proof
Definitions occuring in Statement : 
int-to-ring: int-to-ring(r;n), 
rng: Rng, 
rng_plus: +r, 
rng_car: |r|, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
add: n + m, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
squash: ↓T, 
prop: ℙ, 
rng: Rng, 
top: Top, 
infix_ap: x f y, 
true: True, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
int-to-ring: int-to-ring(r;n), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
ge: i ≥ j , 
less_than: a < b, 
subtract: n - m
Lemmas referenced : 
rng_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
int-to-ring-zero, 
rng_zero_wf, 
rng_plus_wf, 
int-to-ring-minus-one, 
rng_one_wf, 
subtype_rel_self, 
iff_weakening_equal, 
rng_plus_inv, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rng_nat_op_add, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
le_wf, 
false_wf, 
infix_ap_wf, 
rng_nat_op_wf, 
rng_nat_op_one, 
itermMinus_wf, 
int_term_value_minus_lemma, 
rng_minus_wf, 
rng_minus_over_plus, 
rng_plus_assoc, 
rng_plus_comm, 
rng_plus_inv_assoc, 
decidable__lt, 
subtract_wf, 
subtract-add-cancel, 
int-to-ring_wf, 
rng_plus_zero, 
nat_properties, 
ge_wf, 
absval_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
nat_wf, 
add_nat_wf, 
add-is-int-iff, 
absval_unfold, 
top_wf, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
rng_plus_ac_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
intEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
extract_by_obid, 
lambdaFormation, 
dependent_functionElimination, 
minusEquality, 
natural_numberEquality, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
setElimination, 
rename, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
addEquality, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
approximateComputation, 
int_eqEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
equalityUniverse, 
levelHypothesis, 
hyp_replacement, 
applyLambdaEquality, 
intWeakElimination, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
lessCases, 
sqequalAxiom
Latex:
\mforall{}[r:Rng].  \mforall{}[a1,a2:\mBbbZ{}].    (int-to-ring(r;a1  +  a2)  =  (int-to-ring(r;a1)  +r  int-to-ring(r;a2)))
Date html generated:
2018_05_21-PM-03_14_58
Last ObjectModification:
2018_05_19-AM-08_08_28
Theory : rings_1
Home
Index