Nuprl Lemma : int-to-ring-hom

[r:Rng]. rng_hom_p(ℤ-rng;r;λx.int-to-ring(r;x))


Proof




Definitions occuring in Statement :  int-to-ring: int-to-ring(r;n) int_ring: -rng rng_hom_p: rng_hom_p(r;s;f) rng: Rng uall: [x:A]. B[x] lambda: λx.A[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rng_hom_p: rng_hom_p(r;s;f) and: P ∧ Q int_ring: -rng rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) fun_thru_2op: FunThru2op(A;B;opa;opb;f) infix_ap: y squash: T rng: Rng true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q rng_times: * rng_one: 1 cand: c∧ B prop: integ_dom: IntegDom{i} crng: CRng
Lemmas referenced :  equal_wf rng_car_wf int-to-ring-add infix_ap_wf rng_plus_wf int-to-ring_wf iff_weakening_equal int-to-ring-mul rng_times_wf squash_wf true_wf int-to-ring-one rng_one_wf int_ring_wf integ_dom_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination because_Cache hypothesis setElimination rename hypothesisEquality natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination intEquality isect_memberEquality axiomEquality universeEquality independent_pairEquality

Latex:
\mforall{}[r:Rng].  rng\_hom\_p(\mBbbZ{}-rng;r;\mlambda{}x.int-to-ring(r;x))



Date html generated: 2017_10_01-AM-08_19_24
Last ObjectModification: 2017_02_28-PM-02_04_04

Theory : rings_1


Home Index