Nuprl Lemma : int-to-ring-hom
∀[r:Rng]. rng_hom_p(ℤ-rng;r;λx.int-to-ring(r;x))
Proof
Definitions occuring in Statement : 
int-to-ring: int-to-ring(r;n)
, 
int_ring: ℤ-rng
, 
rng_hom_p: rng_hom_p(r;s;f)
, 
rng: Rng
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng_hom_p: rng_hom_p(r;s;f)
, 
and: P ∧ Q
, 
int_ring: ℤ-rng
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_plus: +r
, 
pi2: snd(t)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
infix_ap: x f y
, 
squash: ↓T
, 
rng: Rng
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
rng_times: *
, 
rng_one: 1
, 
cand: A c∧ B
, 
prop: ℙ
, 
integ_dom: IntegDom{i}
, 
crng: CRng
Lemmas referenced : 
equal_wf, 
rng_car_wf, 
int-to-ring-add, 
infix_ap_wf, 
rng_plus_wf, 
int-to-ring_wf, 
iff_weakening_equal, 
int-to-ring-mul, 
rng_times_wf, 
squash_wf, 
true_wf, 
int-to-ring-one, 
rng_one_wf, 
int_ring_wf, 
integ_dom_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
intEquality, 
isect_memberEquality, 
axiomEquality, 
universeEquality, 
independent_pairEquality
Latex:
\mforall{}[r:Rng].  rng\_hom\_p(\mBbbZ{}-rng;r;\mlambda{}x.int-to-ring(r;x))
Date html generated:
2017_10_01-AM-08_19_24
Last ObjectModification:
2017_02_28-PM-02_04_04
Theory : rings_1
Home
Index