Nuprl Lemma : int-to-ring-mul
∀[r:Rng]. ∀[a1,a2:ℤ].  (int-to-ring(r;a1 * a2) = (int-to-ring(r;a1) * int-to-ring(r;a2)) ∈ |r|)
Proof
Definitions occuring in Statement : 
int-to-ring: int-to-ring(r;n)
, 
rng: Rng
, 
rng_times: *
, 
rng_car: |r|
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
rng: Rng
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
less_than: a < b
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
subtract: n - m
, 
infix_ap: x f y
Lemmas referenced : 
rng_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
absval_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
add_nat_wf, 
false_wf, 
le_wf, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
equal_wf, 
decidable__lt, 
squash_wf, 
true_wf, 
rng_car_wf, 
infix_ap_wf, 
rng_times_wf, 
int-to-ring_wf, 
iff_weakening_equal, 
subtype_base_sq, 
int_subtype_base, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
decidable__equal_int, 
equal-wf-base, 
not_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
itermMinus_wf, 
int_term_value_minus_lemma, 
absval_unfold, 
zero-mul, 
rng_times_zero, 
int-to-ring-zero, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rng_plus_wf, 
int-to-ring-add, 
int-to-ring-one, 
rng_one_wf, 
rng_times_over_plus, 
rng_times_one, 
minus-zero, 
int-to-ring-minus, 
int-to-ring-minus-one, 
rng_minus_wf, 
rng_times_over_minus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
intEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
extract_by_obid, 
lambdaFormation, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
unionElimination, 
dependent_set_memberEquality, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
instantiate, 
cumulativity, 
minusEquality, 
equalityElimination, 
lessCases, 
sqequalAxiom, 
inlFormation, 
inrFormation, 
multiplyEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[a1,a2:\mBbbZ{}].    (int-to-ring(r;a1  *  a2)  =  (int-to-ring(r;a1)  *  int-to-ring(r;a2)))
Date html generated:
2017_10_01-AM-08_19_22
Last ObjectModification:
2017_02_28-PM-02_04_37
Theory : rings_1
Home
Index