Nuprl Lemma : int-to-ring-mul

[r:Rng]. ∀[a1,a2:ℤ].  (int-to-ring(r;a1 a2) (int-to-ring(r;a1) int-to-ring(r;a2)) ∈ |r|)


Proof




Definitions occuring in Statement :  int-to-ring: int-to-ring(r;n) rng: Rng rng_times: * rng_car: |r| uall: [x:A]. B[x] infix_ap: y multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} decidable: Dec(P) or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) squash: T rng: Rng true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b subtract: m infix_ap: y
Lemmas referenced :  rng_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf absval_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf add_nat_wf false_wf le_wf add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma equal_wf decidable__lt squash_wf true_wf rng_car_wf infix_ap_wf rng_times_wf int-to-ring_wf iff_weakening_equal subtype_base_sq int_subtype_base lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf decidable__equal_int equal-wf-base not_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot itermMinus_wf int_term_value_minus_lemma absval_unfold zero-mul rng_times_zero int-to-ring-zero itermMultiply_wf int_term_value_mul_lemma rng_plus_wf int-to-ring-add int-to-ring-one rng_one_wf rng_times_over_plus rng_times_one minus-zero int-to-ring-minus int-to-ring-minus-one rng_minus_wf rng_times_over_minus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis intEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache extract_by_obid lambdaFormation setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination dependent_set_memberEquality addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed productElimination imageElimination universeEquality imageMemberEquality instantiate cumulativity minusEquality equalityElimination lessCases sqequalAxiom inlFormation inrFormation multiplyEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[a1,a2:\mBbbZ{}].    (int-to-ring(r;a1  *  a2)  =  (int-to-ring(r;a1)  *  int-to-ring(r;a2)))



Date html generated: 2017_10_01-AM-08_19_22
Last ObjectModification: 2017_02_28-PM-02_04_37

Theory : rings_1


Home Index