Nuprl Lemma : pa-sep-irrefl

[p:{2...}]. ∀x:basic-padic(p). pa-sep(p;x;x))


Proof




Definitions occuring in Statement :  pa-sep: pa-sep(p;x;y) basic-padic: basic-padic(p) int_upper: {i...} uall: [x:A]. B[x] all: x:A. B[x] not: ¬A natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] not: ¬A implies:  Q false: False basic-padic: basic-padic(p) pa-sep: pa-sep(p;x;y) or: P ∨ Q nat: guard: {T} int_upper: {i...} ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: nat_plus: + le: A ≤ B and: P ∧ Q decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B less_than': less_than'(a;b) true: True
Lemmas referenced :  nat_properties int_upper_properties full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf pa-sep_wf basic-padic_wf int_upper_wf p-sep-irrefl decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution productElimination unionElimination extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule because_Cache dependent_set_memberEquality independent_pairFormation applyEquality

Latex:
\mforall{}[p:\{2...\}].  \mforall{}x:basic-padic(p).  (\mneg{}pa-sep(p;x;x))



Date html generated: 2018_05_21-PM-03_28_36
Last ObjectModification: 2018_05_19-AM-08_24_36

Theory : rings_1


Home Index