Nuprl Lemma : pa-sep-or

[p:{2...}]. ∀x,y:basic-padic(p).  (pa-sep(p;x;y)  (∀z:basic-padic(p). (pa-sep(p;z;x) ∨ pa-sep(p;z;y))))


Proof




Definitions occuring in Statement :  pa-sep: pa-sep(p;x;y) basic-padic: basic-padic(p) int_upper: {i...} uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q basic-padic: basic-padic(p) pa-sep: pa-sep(p;x;y) or: P ∨ Q member: t ∈ T nat: decidable: Dec(P) guard: {T} ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: nat_plus: + int_upper: {i...} le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B less_than': less_than'(a;b) true: True
Lemmas referenced :  decidable__equal_int decidable__int_equal nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf not_wf equal_wf p-sep_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf or_wf basic-padic_wf pa-sep_wf int_upper_wf p-sep-or
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule unionElimination cut introduction extract_by_obid dependent_functionElimination setElimination rename hypothesisEquality hypothesis inlFormation equalityTransitivity equalitySymmetry inrFormation isectElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation dependent_set_memberEquality applyEquality because_Cache

Latex:
\mforall{}[p:\{2...\}]
    \mforall{}x,y:basic-padic(p).    (pa-sep(p;x;y)  {}\mRightarrow{}  (\mforall{}z:basic-padic(p).  (pa-sep(p;z;x)  \mvee{}  pa-sep(p;z;y))))



Date html generated: 2018_05_21-PM-03_28_31
Last ObjectModification: 2018_05_19-AM-08_24_41

Theory : rings_1


Home Index