Nuprl Lemma : prime_ideals_in_int_ring

i:ℕ+(ℤ-rng-Prime(i) ⇐⇒ prime(i))


Proof




Definitions occuring in Statement :  int_ring: -rng rprime: r-Prime(u) prime: prime(a) nat_plus: + all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  int_ring: -rng rprime: r-Prime(u) rng_one: 1 pi2: snd(t) pi1: fst(t) rng_car: |r| rng_times: * infix_ap: y ring_divs: in r all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat_plus: + so_apply: x[s] exists: x:A. B[x] subtype_rel: A ⊆B or: P ∨ Q rev_implies:  Q not: ¬A false: False prime: prime(a) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top cand: c∧ B assoced: b divides: a decidable: Dec(P) guard: {T}
Lemmas referenced :  one_divs_any assoced_wf int_term_value_mul_lemma int_formula_prop_not_lemma itermMultiply_wf intformnot_wf decidable__equal_int divides_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties nat_plus_wf prime_wf equal_wf or_wf int_subtype_base all_wf equal-wf-T-base exists_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin productEquality cut lemma_by_obid isectElimination intEquality lambdaEquality multiplyEquality hypothesisEquality setElimination rename baseClosed hypothesis because_Cache functionEquality baseApply closedConclusion applyEquality independent_functionElimination voidElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidEquality computeAll introduction unionElimination inlFormation inrFormation

Latex:
\mforall{}i:\mBbbN{}\msupplus{}.  (\mBbbZ{}-rng-Prime(i)  \mLeftarrow{}{}\mRightarrow{}  prime(i))



Date html generated: 2016_05_15-PM-00_26_25
Last ObjectModification: 2016_01_15-AM-08_52_21

Theory : rings_1


Home Index