Nuprl Lemma : prime_ideals_in_int_ring
∀i:ℕ+. (ℤ-rng-Prime(i) ⇐⇒ prime(i))
Proof
Definitions occuring in Statement : 
int_ring: ℤ-rng, 
rprime: r-Prime(u), 
prime: prime(a), 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
int_ring: ℤ-rng, 
rprime: r-Prime(u), 
rng_one: 1, 
pi2: snd(t), 
pi1: fst(t), 
rng_car: |r|, 
rng_times: *, 
infix_ap: x f y, 
ring_divs: a | b in r, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
nat_plus: ℕ+, 
so_apply: x[s], 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
false: False, 
prime: prime(a), 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
cand: A c∧ B, 
assoced: a ~ b, 
divides: b | a, 
decidable: Dec(P), 
guard: {T}
Lemmas referenced : 
one_divs_any, 
assoced_wf, 
int_term_value_mul_lemma, 
int_formula_prop_not_lemma, 
itermMultiply_wf, 
intformnot_wf, 
decidable__equal_int, 
divides_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_plus_properties, 
nat_plus_wf, 
prime_wf, 
equal_wf, 
or_wf, 
int_subtype_base, 
all_wf, 
equal-wf-T-base, 
exists_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
productEquality, 
cut, 
lemma_by_obid, 
isectElimination, 
intEquality, 
lambdaEquality, 
multiplyEquality, 
hypothesisEquality, 
setElimination, 
rename, 
baseClosed, 
hypothesis, 
because_Cache, 
functionEquality, 
baseApply, 
closedConclusion, 
applyEquality, 
independent_functionElimination, 
voidElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidEquality, 
computeAll, 
introduction, 
unionElimination, 
inlFormation, 
inrFormation
Latex:
\mforall{}i:\mBbbN{}\msupplus{}.  (\mBbbZ{}-rng-Prime(i)  \mLeftarrow{}{}\mRightarrow{}  prime(i))
Date html generated:
2016_05_15-PM-00_26_25
Last ObjectModification:
2016_01_15-AM-08_52_21
Theory : rings_1
Home
Index