Nuprl Lemma : mset_mem_functionality_wrt_bsubmset
∀s:DSet. ∀a:FiniteSet{s}. ∀b:MSet{s}. ∀u:|s|.  ((↑(a ⊆b b)) ⇒ (↑(u ∈b a ⇒b (u ∈b b))))
Proof
Definitions occuring in Statement : 
bsubmset: a ⊆b b, 
mset_mem: mset_mem, 
finite_set: FiniteSet{s}, 
mset: MSet{s}, 
bimplies: p ⇒b q, 
assert: ↑b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
finite_set: FiniteSet{s}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
dset: DSet
Lemmas referenced : 
iff_weakening_uiff, 
assert_wf, 
bimplies_wf, 
mset_mem_wf, 
isect_wf, 
assert_of_bimplies, 
bsubmset_wf, 
set_car_wf, 
mset_wf, 
finite_set_wf, 
dset_wf, 
mem_bsubmset, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
isect_memberEquality, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
independent_functionElimination, 
productElimination, 
isect_memberFormation, 
introduction
Latex:
\mforall{}s:DSet.  \mforall{}a:FiniteSet\{s\}.  \mforall{}b:MSet\{s\}.  \mforall{}u:|s|.    ((\muparrow{}(a  \msubseteq{}\msubb{}  b))  {}\mRightarrow{}  (\muparrow{}(u  \mmember{}\msubb{}  a  {}\mRightarrow{}\msubb{}  (u  \mmember{}\msubb{}  b))))
Date html generated:
2016_05_16-AM-07_51_04
Last ObjectModification:
2015_12_28-PM-06_02_39
Theory : mset
Home
Index