Nuprl Lemma : mset_mon_for_elim
∀s:DSet. ∀T:Type. ∀f:T ⟶ (|s| List). ∀as:T List.
  ((For{mset_mon{s}} x ∈ as. mk_mset(f[x])) = mk_mset(For{<s List, @>} x ∈ as. f[x]) ∈ MSet{s})
Proof
Definitions occuring in Statement : 
mset_mon: mset_mon{s}
, 
mk_mset: mk_mset(as)
, 
mset: MSet{s}
, 
lapp_mon: <s List, @>
, 
mon_for: For{g} x ∈ as. f[x]
, 
list: T List
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
mset_mon: mset_mon{s}
, 
grp_id: e
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
lapp_mon: <s List, @>
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
grp_op: *
, 
infix_ap: x f y
, 
mk_mset: mk_mset(as)
, 
null_mset: 0{s}
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
mset_sum: a + b
Lemmas referenced : 
list_wf, 
istype-universe, 
set_car_wf, 
dset_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
list-cases, 
mon_for_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
le_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
mon_for_cons_lemma, 
nat_wf, 
mk_mset_wf, 
nil_wf, 
equal_wf, 
squash_wf, 
true_wf, 
mset_sum_wf, 
mset_wf, 
append_wf, 
mon_for_wf, 
lapp_mon_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
functionIsType, 
setElimination, 
rename, 
universeEquality, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
equalityIsType1, 
because_Cache, 
dependent_set_memberEquality_alt, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
imageElimination, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
imageMemberEquality
Latex:
\mforall{}s:DSet.  \mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  (|s|  List).  \mforall{}as:T  List.
    ((For\{mset\_mon\{s\}\}  x  \mmember{}  as.  mk\_mset(f[x]))  =  mk\_mset(For\{<s  List,  @>\}  x  \mmember{}  as.  f[x]))
Date html generated:
2019_10_16-PM-01_06_31
Last ObjectModification:
2018_10_08-PM-00_17_17
Theory : mset
Home
Index