Nuprl Lemma : mset_mon_for_elim

s:DSet. ∀T:Type. ∀f:T ⟶ (|s| List). ∀as:T List.
  ((For{mset_mon{s}} x ∈ as. mk_mset(f[x])) mk_mset(For{<List, @>x ∈ as. f[x]) ∈ MSet{s})


Proof




Definitions occuring in Statement :  mset_mon: mset_mon{s} mk_mset: mk_mset(as) mset: MSet{s} lapp_mon: <List, @> mon_for: For{g} x ∈ as. f[x] list: List so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] mset_mon: mset_mon{s} grp_id: e pi2: snd(t) pi1: fst(t) lapp_mon: <List, @> cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B grp_op: * infix_ap: y mk_mset: mk_mset(as) null_mset: 0{s} true: True iff: ⇐⇒ Q rev_implies:  Q mset_sum: b
Lemmas referenced :  list_wf istype-universe set_car_wf dset_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list-cases mon_for_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le mon_for_cons_lemma nat_wf mk_mset_wf nil_wf equal_wf squash_wf true_wf mset_sum_wf mset_wf append_wf mon_for_wf lapp_mon_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality functionIsType setElimination rename universeEquality intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation axiomEquality functionIsTypeImplies inhabitedIsType unionElimination promote_hyp hypothesis_subsumption productElimination equalityIsType1 because_Cache dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination equalityIsType4 baseApply closedConclusion baseClosed applyEquality intEquality imageMemberEquality

Latex:
\mforall{}s:DSet.  \mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  (|s|  List).  \mforall{}as:T  List.
    ((For\{mset\_mon\{s\}\}  x  \mmember{}  as.  mk\_mset(f[x]))  =  mk\_mset(For\{<s  List,  @>\}  x  \mmember{}  as.  f[x]))



Date html generated: 2019_10_16-PM-01_06_31
Last ObjectModification: 2018_10_08-PM-00_17_17

Theory : mset


Home Index