Nuprl Lemma : oal_le_connex
∀s:LOSet. ∀g:OGrp.  Connex(|oal(s;g)|;ps,qs.ps ≤{s,g} qs)
Proof
Definitions occuring in Statement : 
oal_le: ps ≤{s,g} qs, 
oalist: oal(a;b), 
connex: Connex(T;x,y.R[x; y]), 
all: ∀x:A. B[x], 
ocgrp: OGrp, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
ab_binrel: x,y:T. E[x; y], 
xxconnex: connex(T;R), 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x y.t[x; y], 
prop: ℙ, 
so_apply: x[s1;s2], 
ocgrp: OGrp, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
ocgrp_wf, 
loset_wf, 
xxconnex_functionality_wrt_breqv, 
set_car_wf, 
oalist_wf, 
ocmon_subtype_abdmonoid, 
ocgrp_subtype_ocmon, 
subtype_rel_transitivity, 
ocmon_wf, 
abdmonoid_wf, 
ab_binrel_wf, 
oal_le_wf, 
ocgrp_subtype_abdgrp, 
refl_cl_wf, 
oal_lt_wf, 
oal_le_char, 
xxconnex_iff_trichot_a, 
oal_lt_trichot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
because_Cache, 
lambdaEquality, 
cumulativity, 
universeEquality, 
setElimination, 
rename, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.    Connex(|oal(s;g)|;ps,qs.ps  \mleq{}\{s,g\}  qs)
 Date html generated: 
2016_05_16-AM-08_21_43
 Last ObjectModification: 
2015_12_28-PM-06_25_12
Theory : polynom_2
Home
Index