Nuprl Lemma : assert-face-name-eq

[I:Cname List]. ∀[a,b:nameset(I) × ℕ2].  uiff(↑face-name-eq(a;b);a b ∈ (nameset(I) × ℕ2))


Proof




Definitions occuring in Statement :  face-name-eq: face-name-eq(a;b) nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  nameset: nameset(L) face-name-eq: face-name-eq(a;b) coordinate_name: Cname uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] sq_type: SQType(T) implies:  Q guard: {T} prop: int_upper: {i...} int_seg: {i..j-} subtype_rel: A ⊆B deq: EqDecider(T) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  subtype_base_sq product_subtype_base int_subtype_base equal_wf subtype_rel_product int_upper_wf l_member_wf int_seg_wf set_wf equal_functionality_wrt_subtype_rel2 assert_wf product-deq_wf int-deq_wf uiff_wf deq_wf list_wf assert_witness iff_weakening_uiff assert-product-deq
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep independent_pairFormation isect_memberFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity productEquality intEquality independent_isectElimination because_Cache lambdaEquality hypothesis lambdaFormation dependent_functionElimination independent_functionElimination hypothesisEquality productElimination independent_pairEquality setElimination rename setEquality natural_numberEquality dependent_set_memberEquality applyEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry addLevel

Latex:
\mforall{}[I:Cname  List].  \mforall{}[a,b:nameset(I)  \mtimes{}  \mBbbN{}2].    uiff(\muparrow{}face-name-eq(a;b);a  =  b)



Date html generated: 2017_10_05-AM-10_17_30
Last ObjectModification: 2017_07_28-AM-11_20_20

Theory : cubical!sets


Home Index