Nuprl Lemma : assert-product-deq
∀[A,B:Type]. ∀[a:EqDecider(A)]. ∀[b:EqDecider(B)]. ∀[x,y:A × B].  uiff(↑(product-deq(A;B;a;b) x y);x = y ∈ (A × B))
Proof
Definitions occuring in Statement : 
product-deq: product-deq(A;B;a;b), 
deq: EqDecider(T), 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
apply: f a, 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
product-deq: product-deq(A;B;a;b), 
proddeq: proddeq(a;b), 
pi1: fst(t), 
pi2: snd(t), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
deq: EqDecider(T), 
cand: A c∧ B, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
eqof: eqof(d), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
assert_wf, 
band_wf, 
iff_transitivity, 
eqof_wf, 
and_wf, 
equal_wf, 
iff_weakening_uiff, 
assert_of_band, 
safe-assert-deq, 
assert_witness, 
product-deq_wf, 
deq_wf, 
pi2_wf, 
pi1_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
productElimination, 
thin, 
independent_pairFormation, 
isect_memberFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
introduction, 
addLevel, 
independent_functionElimination, 
because_Cache, 
lambdaFormation, 
independent_isectElimination, 
productEquality, 
independent_pairEquality, 
lambdaEquality, 
universeEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp
Latex:
\mforall{}[A,B:Type].  \mforall{}[a:EqDecider(A)].  \mforall{}[b:EqDecider(B)].  \mforall{}[x,y:A  \mtimes{}  B].
    uiff(\muparrow{}(product-deq(A;B;a;b)  x  y);x  =  y)
Date html generated:
2016_05_14-AM-06_07_27
Last ObjectModification:
2015_12_26-AM-11_46_32
Theory : equality!deciders
Home
Index