Nuprl Lemma : groupoid-nerve-filler1_wf
∀[G:Groupoid]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
∀[box:open_box(cubical-nerve(cat(G));I;J;x;i)].
  groupoid-nerve-filler1(G;I;J;x;i;box) ∈ cubical-nerve(cat(G))(I) supposing (¬↑null(J)) ∧ (||box|| ≤ 3)
Proof
Definitions occuring in Statement : 
groupoid-nerve-filler1: groupoid-nerve-filler1(G;I;J;x;i;box)
, 
cubical-nerve: cubical-nerve(X)
, 
open_box: open_box(X;I;J;x;i)
, 
I-cube: X(I)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
groupoid-cat: cat(G)
, 
groupoid: Groupoid
, 
length: ||as||
, 
null: null(as)
, 
list: T List
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
and: P ∧ Q
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
open_box: open_box(X;I;J;x;i)
, 
nameset: nameset(L)
, 
groupoid-nerve-filler1: groupoid-nerve-filler1(G;I;J;x;i;box)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
name-morph: name-morph(I;J)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
cons: [a / b]
, 
bfalse: ff
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
lelt: i ≤ j < k
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
listp: A List+
, 
groupoid-cat: cat(G)
Lemmas referenced : 
length-open_box-le-3, 
cubical-nerve_wf, 
groupoid-cat_wf, 
not_wf, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
nameset_wf, 
top_wf, 
le_wf, 
length_wf, 
I-face_wf, 
open_box_wf, 
coordinate_name_wf, 
int_seg_wf, 
list_wf, 
groupoid_wf, 
cubical-nerve-I-cube, 
poset_functor_extend-is-functor, 
nerve_box_label_wf, 
decidable__assert, 
equal_wf, 
extd-nameset-nil, 
name-morph_wf, 
nil_wf, 
equal-wf-T-base, 
nerve_box_edge1_wf, 
hd_wf, 
listp_properties, 
list-cases, 
length_of_nil_lemma, 
null_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
null_cons_lemma, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
cat-arrow_wf, 
name-morph-flip_wf, 
groupoid-edges-commute1, 
hd_member, 
list-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
inlFormation, 
inrFormation, 
lambdaFormation, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
addEquality, 
independent_pairFormation, 
intEquality, 
minusEquality, 
dependent_set_memberEquality, 
setEquality
Latex:
\mforall{}[G:Groupoid].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(cat(G));I;J;x;i)].
    groupoid-nerve-filler1(G;I;J;x;i;box)  \mmember{}  cubical-nerve(cat(G))(I) 
    supposing  (\mneg{}\muparrow{}null(J))  \mwedge{}  (||box||  \mleq{}  3)
Date html generated:
2017_10_05-PM-03_43_44
Last ObjectModification:
2017_07_28-AM-11_27_08
Theory : cubical!sets
Home
Index