Nuprl Lemma : groupoid-nerve-functor-flip
∀[G:Groupoid]. ∀[I:Cname List]. ∀[u:nameset(I)]. ∀[K:Cname List]. ∀[f:name-morph(I;K)]. ∀[f1:name-morph(K;[])].
  ∀x1:nameset(I)
    ∀[F:Functor(poset-cat(I-[x1]);cat(G))]
      (F (f o f1) flip((f o f1);u) (λx.Ax))
      = (f(F) f1 flip(f1;f u) (λx.Ax))
      ∈ (cat-arrow(cat(G)) (F (f o f1)) (F (f o flip(f1;f u)))) 
      supposing (↑isname(f u)) ∧ ((f1 (f u)) = 0 ∈ ℕ2)
Proof
Definitions occuring in Statement : 
cubical-nerve: cubical-nerve(X), 
poset-cat: poset-cat(J), 
cube-set-restriction: f(s), 
name-morph-flip: flip(f;y), 
name-comp: (f o g), 
name-morph: name-morph(I;J), 
isname: isname(z), 
nameset: nameset(L), 
cname_deq: CnameDeq, 
coordinate_name: Cname, 
groupoid-cat: cat(G), 
groupoid: Groupoid, 
functor-arrow: arrow(F), 
functor-ob: ob(F), 
cat-functor: Functor(C1;C2), 
cat-arrow: cat-arrow(C), 
list-diff: as-bs, 
cons: [a / b], 
nil: [], 
list: T List, 
int_seg: {i..j-}, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
and: P ∧ Q, 
apply: f a, 
lambda: λx.A[x], 
natural_number: $n, 
equal: s = t ∈ T, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
nameset: nameset(L), 
and: P ∧ Q, 
name-morph: name-morph(I;J), 
uiff: uiff(P;Q), 
cubical-nerve: cubical-nerve(X), 
cube-set-restriction: f(s), 
pi2: snd(t), 
poset-functor: poset-functor(J;K;f), 
functor-comp: functor-comp(F;G), 
functor-arrow: arrow(F), 
functor-ob: ob(F), 
top: Top, 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
poset-cat: poset-cat(J), 
cat-ob: cat-ob(C), 
pi1: fst(t), 
name-comp: (f o g), 
compose: f o g, 
uext: uext(g), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
int_seg: {i..j-}, 
coordinate_name: Cname, 
int_upper: {i...}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False
Lemmas referenced : 
cat-functor_wf, 
poset-cat_wf, 
list-diff_wf, 
coordinate_name_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
groupoid-cat_wf, 
name-morph_wf, 
nameset_wf, 
list_wf, 
groupoid_wf, 
assert-isname, 
ob_pair_lemma, 
istype-void, 
arrow_pair_lemma, 
name-morph-ext, 
name-comp_wf, 
name-morph-flip_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
extd-nameset_wf, 
name-comp-flip, 
subtype_rel_self, 
iff_weakening_equal, 
arrow_mk_functor_lemma, 
functor-arrow_wf, 
name-morph_subtype, 
nameset_subtype, 
list-diff-subset, 
member-poset-cat-arrow, 
poset-cat-arrow-flip, 
cat-ob_wf, 
isname-name, 
int_seg_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
poset-cat-arrow_subtype, 
subtype_rel_wf, 
cat-arrow_wf, 
istype-assert, 
isname_wf, 
int_seg_wf, 
extd-nameset-nil
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
productElimination, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
inhabitedIsType, 
instantiate, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
applyLambdaEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
hyp_replacement, 
productIsType, 
equalityIsType3
Latex:
\mforall{}[G:Groupoid].  \mforall{}[I:Cname  List].  \mforall{}[u:nameset(I)].  \mforall{}[K:Cname  List].  \mforall{}[f:name-morph(I;K)].
\mforall{}[f1:name-morph(K;[])].
    \mforall{}x1:nameset(I)
        \mforall{}[F:Functor(poset-cat(I-[x1]);cat(G))]
            (F  (f  o  f1)  flip((f  o  f1);u)  (\mlambda{}x.Ax))  =  (f(F)  f1  flip(f1;f  u)  (\mlambda{}x.Ax)) 
            supposing  (\muparrow{}isname(f  u))  \mwedge{}  ((f1  (f  u))  =  0)
Date html generated:
2019_11_05-PM-00_39_25
Last ObjectModification:
2018_11_10-PM-03_22_44
Theory : cubical!sets
Home
Index