Nuprl Lemma : iota-identity2
∀[I:Cname List]. ∀[x:Cname]. ∀[i:ℕ2].  ((x:=i) o iota(x)) = 1 ∈ name-morph(I;I) supposing ¬(x ∈ I)
Proof
Definitions occuring in Statement : 
name-comp: (f o g), 
iota: iota(x), 
face-map: (x:=i), 
id-morph: 1, 
name-morph: name-morph(I;J), 
coordinate_name: Cname, 
l_member: (x ∈ l), 
list: T List, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
name-morph: name-morph(I;J), 
squash: ↓T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iota: iota(x), 
face-map: (x:=i), 
name-comp: (f o g), 
id-morph: 1, 
uext: uext(g), 
compose: f o g, 
nameset: nameset(L), 
coordinate_name: Cname, 
int_upper: {i...}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
subtype_rel: A ⊆r B, 
isname: isname(z)
Lemmas referenced : 
id-morph_wf, 
not_wf, 
l_member_wf, 
coordinate_name_wf, 
int_seg_wf, 
list_wf, 
all_wf, 
nameset_wf, 
assert_wf, 
isname_wf, 
equal_wf, 
extd-nameset_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_subtype_base, 
nameset_subtype_extd-nameset, 
le_int_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
equalitySymmetry, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
natural_numberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality, 
lambdaEquality, 
functionEquality, 
applyEquality, 
functionExtensionality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
intEquality
Latex:
\mforall{}[I:Cname  List].  \mforall{}[x:Cname].  \mforall{}[i:\mBbbN{}2].    ((x:=i)  o  iota(x))  =  1  supposing  \mneg{}(x  \mmember{}  I)
Date html generated:
2017_10_05-AM-10_08_13
Last ObjectModification:
2017_07_28-AM-11_16_47
Theory : cubical!sets
Home
Index