Nuprl Lemma : poset-cat-arrow-not-equal
∀I:Cname List. ∀y:nameset(I). ∀c1,c2:cat-ob(poset-cat(I)).
  (c1 y ≠ c2 y 
⇒ (∀f:cat-arrow(poset-cat(I)) c1 c2. (((c1 y) = 0 ∈ ℕ2) ∧ ((c2 y) = 1 ∈ ℕ2))))
Proof
Definitions occuring in Statement : 
poset-cat: poset-cat(J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
list: T List
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
nequal: a ≠ b ∈ T 
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
poset-cat: poset-cat(J)
, 
name-morph: name-morph(I;J)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
cand: A c∧ B
, 
nequal: a ≠ b ∈ T 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
false: False
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
le: A ≤ B
, 
not: ¬A
Lemmas referenced : 
cat-arrow_wf, 
poset-cat_wf, 
nequal_wf, 
nameset_wf, 
extd-nameset_wf, 
nil_wf, 
coordinate_name_wf, 
all_wf, 
assert_wf, 
isname_wf, 
equal_wf, 
cat-ob_wf, 
list_wf, 
assert_of_le_int, 
int_seg_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
lelt_wf, 
le_wf, 
int_seg_subtype, 
false_wf, 
int_seg_cases, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
applyEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
because_Cache, 
functionExtensionality, 
dependent_functionElimination, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
promote_hyp, 
hypothesis_subsumption, 
addEquality, 
int_eqEquality
Latex:
\mforall{}I:Cname  List.  \mforall{}y:nameset(I).  \mforall{}c1,c2:cat-ob(poset-cat(I)).
    (c1  y  \mneq{}  c2  y  {}\mRightarrow{}  (\mforall{}f:cat-arrow(poset-cat(I))  c1  c2.  (((c1  y)  =  0)  \mwedge{}  ((c2  y)  =  1))))
Date html generated:
2017_10_05-AM-10_27_54
Last ObjectModification:
2017_07_28-AM-11_23_24
Theory : cubical!sets
Home
Index