Nuprl Lemma : poset-functors-equal
∀C:SmallCategory. ∀I:Cname List. ∀F,G:Functor(poset-cat(I);C).
  (F = G ∈ Functor(poset-cat(I);C)
  ⇐⇒ (∀f:name-morph(I;[]). ((ob(F) f) = (ob(G) f) ∈ cat-ob(C)))
      ∧ (∀x:nameset(I). ∀f:{f:name-morph(I;[])| (f x) = 0 ∈ ℕ2} .
           ((arrow(F) f flip(f;x) (λx.Ax))
           = (arrow(G) f flip(f;x) (λx.Ax))
           ∈ (cat-arrow(C) (ob(F) f) (ob(F) flip(f;x))))))
Proof
Definitions occuring in Statement : 
poset-cat: poset-cat(J), 
name-morph-flip: flip(f;y), 
name-morph: name-morph(I;J), 
nameset: nameset(L), 
coordinate_name: Cname, 
functor-arrow: arrow(F), 
functor-ob: ob(F), 
cat-functor: Functor(C1;C2), 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
small-category: SmallCategory, 
nil: [], 
list: T List, 
int_seg: {i..j-}, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
lambda: λx.A[x], 
natural_number: $n, 
equal: s = t ∈ T, 
axiom: Ax
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
cand: A c∧ B, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
name-morph: name-morph(I;J), 
cat-ob: cat-ob(C), 
pi1: fst(t), 
poset-cat: poset-cat(J), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
int_seg: {i..j-}, 
squash: ↓T, 
true: True, 
rev_implies: P ⇐ Q, 
guard: {T}, 
nameset: nameset(L), 
coordinate_name: Cname, 
int_upper: {i...}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
poset-functor-extends: poset-functor-extends(C;I;L;E;F)
Lemmas referenced : 
cat-functor_wf, 
poset-cat_wf, 
list_wf, 
coordinate_name_wf, 
small-category_wf, 
equal_wf, 
and_wf, 
functor-ob_wf, 
cat-ob_wf, 
subtype_rel_self, 
nameset_wf, 
extd-nameset_wf, 
nil_wf, 
all_wf, 
assert_wf, 
isname_wf, 
name-morph_wf, 
member-poset-cat-arrow, 
subtype_rel_set, 
equal-wf-T-base, 
int_seg_wf, 
name-morph-flip_wf, 
poset-cat-arrow-flip, 
set_wf, 
extd-nameset-nil, 
functor-arrow_wf, 
squash_wf, 
true_wf, 
poset-extend-unique, 
subtype_rel_dep_function, 
int_seg_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
iff_weakening_equal, 
cat-arrow_wf, 
subtype_rel-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
equalitySymmetry, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
equalityTransitivity, 
functionEquality, 
applyEquality, 
sqequalRule, 
setEquality, 
lambdaEquality, 
functionExtensionality, 
natural_numberEquality, 
baseClosed, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
addLevel, 
levelHypothesis, 
imageElimination, 
imageMemberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
universeEquality, 
productEquality, 
instantiate
Latex:
\mforall{}C:SmallCategory.  \mforall{}I:Cname  List.  \mforall{}F,G:Functor(poset-cat(I);C).
    (F  =  G
    \mLeftarrow{}{}\mRightarrow{}  (\mforall{}f:name-morph(I;[]).  ((ob(F)  f)  =  (ob(G)  f)))
            \mwedge{}  (\mforall{}x:nameset(I).  \mforall{}f:\{f:name-morph(I;[])|  (f  x)  =  0\}  .
                      ((arrow(F)  f  flip(f;x)  (\mlambda{}x.Ax))  =  (arrow(G)  f  flip(f;x)  (\mlambda{}x.Ax)))))
Date html generated:
2017_10_05-PM-03_36_15
Last ObjectModification:
2017_07_28-AM-11_25_03
Theory : cubical!sets
Home
Index