Nuprl Lemma : 0-comp-cc-fst-comp-m
∀[H:j⊢]. ([0(𝕀)] o p o m = m ∈ H.𝕀.𝕀, ((q=0))p j⟶ H.𝕀)
Proof
Definitions occuring in Statement : 
csm-m: m, 
context-subset: Gamma, phi, 
face-zero: (i=0), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
csm-id-adjoin: [u], 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
csm-comp: G o F, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
guard: {T}, 
cc-snd: q, 
interval-type: 𝕀, 
cc-fst: p, 
csm-ap-type: (AF)s, 
constant-cubical-type: (X), 
subtype_rel: A ⊆r B, 
cube-context-adjoin: X.A, 
context-subset: Gamma, phi, 
all: ∀x:A. B[x], 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm-m: m, 
csm-comp: G o F, 
compose: f o g, 
cc-adjoin-cube: (v;u), 
csm-id: 1(X), 
csm-adjoin: (s;u), 
pi1: fst(t), 
csm-ap: (s)x, 
uimplies: b supposing a, 
lattice-point: Point(l), 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
cubical-type-at: A(a), 
I_cube: A(I), 
functor-ob: ob(F), 
interval-presheaf: 𝕀, 
face-zero: (i=0), 
csm-ap-term: (t)s, 
cubical-term-at: u(a), 
pi2: snd(t), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
DeMorgan-algebra: DeMorganAlgebra, 
uiff: uiff(P;Q), 
implies: P ⇒ Q
Lemmas referenced : 
cubical_set_wf, 
csm-equal, 
context-subset_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf, 
face-zero_wf, 
cc-snd_wf, 
csm-context-subset-subtype2, 
csm-m_wf, 
I_cube_pair_redex_lemma, 
I_cube_wf, 
fset_wf, 
nat_wf, 
dM0_wf, 
subtype_rel_self, 
cubical-type-at_wf, 
istype-cubical-type-at, 
dM-to-FL-eq-1, 
dm-neg_wf, 
names_wf, 
names-deq_wf, 
lattice-point_wf, 
free-DeMorgan-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
subtype_rel-equal, 
dM_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
interval-type-at, 
dma-neg-eq-1-implies-meet-eq-0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
equalitySymmetry, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
because_Cache, 
applyEquality, 
functionExtensionality, 
dependent_functionElimination, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality, 
independent_functionElimination
Latex:
\mforall{}[H:j\mvdash{}].  ([0(\mBbbI{})]  o  p  o  m  =  m)
Date html generated:
2020_05_20-PM-04_42_23
Last ObjectModification:
2020_04_13-PM-08_47_12
Theory : cubical!type!theory
Home
Index