Nuprl Lemma : app-trans-equiv-path
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}]. ∀[a:{G ⊢ _:decode(A)}].
  (app(trans-equiv-path(G;A;B;f); a)
  = transprt-const(G;CompFun(B);transprt-const(G;CompFun(B);app(equiv-fun(f); a)))
  ∈ {G ⊢ _:decode(B)})
Proof
Definitions occuring in Statement : 
trans-equiv-path: trans-equiv-path(G;A;B;f)
, 
universe-comp-fun: CompFun(A)
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
transprt-const: transprt-const(G;cA;a)
, 
equiv-fun: equiv-fun(f)
, 
cubical-equiv: Equiv(T;A)
, 
cubical-app: app(w; u)
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
trans-equiv-path: trans-equiv-path(G;A;B;f)
, 
uimplies: b supposing a
, 
cubical-lam: cubical-lam(X;b)
, 
let: let, 
all: ∀x:A. B[x]
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe-comp-fun: CompFun(A)
, 
universe-comp-op: compOp(t)
, 
comp-op-to-comp-fun: cop-to-cfun(cA)
, 
csm-comp-structure: (cA)tau
, 
cubical-term-at: u(a)
, 
cc-fst: p
, 
csm-id-adjoin: [u]
, 
interval-type: 𝕀
, 
csm-comp: G o F
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
compose: f o g
, 
pi1: fst(t)
, 
csm-ap: (s)x
, 
csm-composition: (comp)sigma
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
csm-ap-term-universe, 
cubical_set_cumulativity-i-j, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cc-fst_wf, 
universe-decode_wf, 
csm-ap-term_wf, 
cubical-equiv-p, 
cubical-term-eqcd, 
cc-snd_wf, 
csm-comp-structure_wf2, 
universe-comp-fun_wf, 
istype-cubical-term, 
cubical-equiv_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
subtype_rel_self, 
composition-structure_wf, 
csm-universe-decode, 
cubical-app_wf_fun, 
csm-ap-type_wf, 
equiv-fun_wf, 
cubical-beta, 
transprt-const_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-term_wf, 
csm-id-adjoin_wf, 
csm-transprt-const, 
iff_weakening_equal, 
cubical-type_wf, 
cubical-lambda_wf, 
csm_id_adjoin_fst_type_lemma, 
csm-ap-id-type, 
cube_set_map_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-cubical-app, 
cc_snd_csm_id_adjoin_lemma, 
cubical-fun_wf, 
csm-equiv-fun, 
csm_id_adjoin_fst_term_lemma, 
csm-ap-id-term
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
because_Cache, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType, 
dependent_functionElimination, 
Error :memTop, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
independent_functionElimination, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
applyLambdaEquality
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].  \mforall{}[a:\{G  \mvdash{}  \_:decode(A)\}].
    (app(trans-equiv-path(G;A;B;f);  a)
    =  transprt-const(G;CompFun(B);transprt-const(G;CompFun(B);app(equiv-fun(f);  a))))
Date html generated:
2020_05_20-PM-07_40_37
Last ObjectModification:
2020_04_30-PM-05_09_19
Theory : cubical!type!theory
Home
Index