Nuprl Lemma : app-trans-equiv-path

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[f:{G ⊢ _:Equiv(decode(A);decode(B))}]. ∀[a:{G ⊢ _:decode(A)}].
  (app(trans-equiv-path(G;A;B;f); a)
  transprt-const(G;CompFun(B);transprt-const(G;CompFun(B);app(equiv-fun(f); a)))
  ∈ {G ⊢ _:decode(B)})


Proof




Definitions occuring in Statement :  trans-equiv-path: trans-equiv-path(G;A;B;f) universe-comp-fun: CompFun(A) universe-decode: decode(t) cubical-universe: c𝕌 transprt-const: transprt-const(G;cA;a) equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) cubical-app: app(w; u) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} trans-equiv-path: trans-equiv-path(G;A;B;f) uimplies: supposing a cubical-lam: cubical-lam(X;b) let: let all: x:A. B[x] composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) implies:  Q squash: T prop: true: True iff: ⇐⇒ Q and: P ∧ Q universe-comp-fun: CompFun(A) universe-comp-op: compOp(t) comp-op-to-comp-fun: cop-to-cfun(cA) csm-comp-structure: (cA)tau cubical-term-at: u(a) cc-fst: p csm-id-adjoin: [u] interval-type: 𝕀 csm-comp: F csm-id: 1(X) csm-adjoin: (s;u) compose: g pi1: fst(t) csm-ap: (s)x csm-composition: (comp)sigma rev_implies:  Q
Lemmas referenced :  csm-ap-term-universe cubical_set_cumulativity-i-j cube-context-adjoin_wf cubical-type-cumulativity2 cc-fst_wf universe-decode_wf csm-ap-term_wf cubical-equiv-p cubical-term-eqcd cc-snd_wf csm-comp-structure_wf2 universe-comp-fun_wf istype-cubical-term cubical-equiv_wf istype-cubical-universe-term cubical_set_wf subtype_rel_self composition-structure_wf csm-universe-decode cubical-app_wf_fun csm-ap-type_wf equiv-fun_wf cubical-beta transprt-const_wf equal_wf squash_wf true_wf istype-universe cubical-term_wf csm-id-adjoin_wf csm-transprt-const iff_weakening_equal cubical-type_wf cubical-lambda_wf csm_id_adjoin_fst_type_lemma csm-ap-id-type cube_set_map_wf subset-cubical-term2 sub_cubical_set_self csm-cubical-app cc_snd_csm_id_adjoin_lemma cubical-fun_wf csm-equiv-fun csm_id_adjoin_fst_term_lemma csm-ap-id-term
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut because_Cache thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt hyp_replacement universeIsType dependent_functionElimination Error :memTop,  inhabitedIsType lambdaFormation_alt equalityIstype independent_functionElimination imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination applyLambdaEquality

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(decode(A);decode(B))\}].  \mforall{}[a:\{G  \mvdash{}  \_:decode(A)\}].
    (app(trans-equiv-path(G;A;B;f);  a)
    =  transprt-const(G;CompFun(B);transprt-const(G;CompFun(B);app(equiv-fun(f);  a))))



Date html generated: 2020_05_20-PM-07_40_37
Last ObjectModification: 2020_04_30-PM-05_09_19

Theory : cubical!type!theory


Home Index