Nuprl Lemma : bool-negation-equiv_wf
bool-negation-equiv(()) ∈ {() ⊢ _:Equiv(decode(Bool);decode(Bool))}
Proof
Definitions occuring in Statement : 
bool-negation-equiv: bool-negation-equiv(X), 
cubical-bool: Bool, 
universe-decode: decode(t), 
cubical-equiv: Equiv(T;A), 
cubical-term: {X ⊢ _:A}, 
trivial-cube-set: (), 
member: t ∈ T
Definitions unfolded in proof : 
bool-negation-equiv: bool-negation-equiv(X), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
cubical-bool: Bool
Lemmas referenced : 
bijection-equiv_wf, 
bool_wf, 
bnot_wf, 
equal_wf, 
squash_wf, 
true_wf, 
bnot_bnot_elim, 
iff_weakening_equal, 
trivial-cube-set_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical_set_wf, 
cubical-equiv_wf, 
discrete-cubical-type_wf, 
discrete-comp_wf, 
universe-decode-encode
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
because_Cache, 
lambdaEquality, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
hyp_replacement, 
instantiate
Latex:
bool-negation-equiv(())  \mmember{}  \{()  \mvdash{}  \_:Equiv(decode(Bool);decode(Bool))\}
Date html generated:
2017_10_05-AM-10_01_32
Last ObjectModification:
2017_03_03-AM-01_39_37
Theory : cubical!type!theory
Home
Index