Nuprl Lemma : bool-negation-equiv_wf

bool-negation-equiv(()) ∈ {() ⊢ _:Equiv(decode(Bool);decode(Bool))}


Proof




Definitions occuring in Statement :  bool-negation-equiv: bool-negation-equiv(X) cubical-bool: Bool universe-decode: decode(t) cubical-equiv: Equiv(T;A) cubical-term: {X ⊢ _:A} trivial-cube-set: () member: t ∈ T
Definitions unfolded in proof :  bool-negation-equiv: bool-negation-equiv(X) member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cubical-bool: Bool
Lemmas referenced :  bijection-equiv_wf bool_wf bnot_wf equal_wf squash_wf true_wf bnot_bnot_elim iff_weakening_equal trivial-cube-set_wf cubical-term_wf cubical-type_wf cubical_set_wf cubical-equiv_wf discrete-cubical-type_wf discrete-comp_wf universe-decode-encode
Rules used in proof :  cut sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache lambdaEquality hypothesisEquality independent_isectElimination lambdaFormation applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination hyp_replacement instantiate

Latex:
bool-negation-equiv(())  \mmember{}  \{()  \mvdash{}  \_:Equiv(decode(Bool);decode(Bool))\}



Date html generated: 2017_10_05-AM-10_01_32
Last ObjectModification: 2017_03_03-AM-01_39_37

Theory : cubical!type!theory


Home Index