Nuprl Lemma : case-type-0
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}].
  ∀[A:Top × Top]. ∀[B:{Gamma ⊢ _}].  Gamma ⊢ (if phi then A else B) = B supposing phi = 0(𝔽) ∈ {Gamma ⊢ _:𝔽}
Proof
Definitions occuring in Statement : 
case-type: (if phi then A else B)
, 
same-cubical-type: Gamma ⊢ A = B
, 
face-0: 0(𝔽)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
product: x:A × B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
cubical-type: {X ⊢ _}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
same-cubical-type: Gamma ⊢ A = B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
case-type-same2, 
cubical-type_wf, 
istype-top, 
face-0_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf, 
empty-context-subset-lemma6, 
context-subset_wf, 
face-1_wf, 
thin-context-subset, 
subtype_rel_product, 
fset_wf, 
nat_wf, 
I_cube_wf, 
names-hom_wf, 
cube-set-restriction_wf, 
istype-universe, 
top_wf, 
subset-cubical-type, 
face-and_wf, 
face-term-implies-subset, 
face-term-implies_wf, 
iff_weakening_equal, 
face-term-and-implies1, 
context-1-subset
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
universeIsType, 
productIsType, 
because_Cache, 
equalityIstype, 
inhabitedIsType, 
instantiate, 
independent_isectElimination, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
setElimination, 
rename, 
functionEquality, 
cumulativity, 
universeEquality, 
functionIsType, 
Error :memTop, 
lambdaFormation_alt, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    \mforall{}[A:Top  \mtimes{}  Top].  \mforall{}[B:\{Gamma  \mvdash{}  \_\}].    Gamma  \mvdash{}  (if  phi  then  A  else  B)  =  B  supposing  phi  =  0(\mBbbF{})
Date html generated:
2020_05_20-PM-04_14_35
Last ObjectModification:
2020_04_10-AM-04_43_35
Theory : cubical!type!theory
Home
Index