Nuprl Lemma : case-type-0

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}].
  ∀[A:Top × Top]. ∀[B:{Gamma ⊢ _}].  Gamma ⊢ (if phi then else B) supposing phi 0(𝔽) ∈ {Gamma ⊢ _:𝔽}


Proof




Definitions occuring in Statement :  case-type: (if phi then else B) same-cubical-type: Gamma ⊢ B face-0: 0(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] top: Top product: x:A × B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T true: True subtype_rel: A ⊆B cubical-type: {X ⊢ _} so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] same-cubical-type: Gamma ⊢ B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  case-type-same2 cubical-type_wf istype-top face-0_wf cubical-term_wf face-type_wf cubical_set_wf empty-context-subset-lemma6 context-subset_wf face-1_wf thin-context-subset subtype_rel_product fset_wf nat_wf I_cube_wf names-hom_wf cube-set-restriction_wf istype-universe top_wf subset-cubical-type face-and_wf face-term-implies-subset face-term-implies_wf iff_weakening_equal face-term-and-implies1 context-1-subset
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality universeIsType productIsType because_Cache equalityIstype inhabitedIsType instantiate independent_isectElimination applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry natural_numberEquality sqequalRule imageMemberEquality baseClosed hyp_replacement setElimination rename functionEquality cumulativity universeEquality functionIsType Error :memTop,  lambdaFormation_alt productElimination independent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    \mforall{}[A:Top  \mtimes{}  Top].  \mforall{}[B:\{Gamma  \mvdash{}  \_\}].    Gamma  \mvdash{}  (if  phi  then  A  else  B)  =  B  supposing  phi  =  0(\mBbbF{})



Date html generated: 2020_05_20-PM-04_14_35
Last ObjectModification: 2020_04_10-AM-04_43_35

Theory : cubical!type!theory


Home Index