Nuprl Lemma : context-map-lemma1
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[I:fset(ℕ)]. ∀[rho:Gamma(I)]. ∀[i:ℕ].  (<s(rho)> ∈ I+i,s(phi(rho)) j⟶ Gamma, phi)
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term-at: u(a)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
context-map: <rho>
, 
cube_set_map: A ⟶ B
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
nc-s: s
, 
add-name: I+i
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
guard: {T}
, 
formal-cube: formal-cube(I)
, 
cubical-term-at: u(a)
, 
context-map: <rho>
, 
csm-ap: (s)x
, 
functor-arrow: arrow(F)
, 
cube-set-restriction: f(s)
, 
names-hom: I ⟶ J
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
istype-nat, 
I_cube_wf, 
fset_wf, 
nat_wf, 
istype-cubical-term, 
face-type_wf, 
cubical_set_wf, 
context-subset-map, 
formal-cube_wf1, 
add-name_wf, 
context-map_wf, 
cube-set-restriction_wf, 
nc-s_wf, 
f-subset-add-name, 
cube_set_map_wf, 
squash_wf, 
true_wf, 
cubical-subset-is-context-subset, 
face-presheaf_wf2, 
cubical-term-at_wf, 
subtype_rel_self, 
context-subset_wf, 
cubical-term-equal, 
csm-ap-term_wf, 
csm-face-type, 
I_cube_pair_redex_lemma, 
csm-ap-term-at, 
cubical-type-at_wf_face-type, 
names-hom_wf, 
equal_wf, 
istype-universe, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cube-set-restriction-comp, 
subtype_rel-equal, 
iff_weakening_equal, 
cubical-term-at-morph, 
nh-comp_wf, 
face-type-ap-morph, 
cube_set_restriction_pair_lemma, 
fl-morph_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
instantiate, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
applyEquality, 
lambdaEquality_alt, 
hyp_replacement, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
Error :memTop, 
functionExtensionality, 
natural_numberEquality, 
universeEquality, 
productElimination, 
independent_functionElimination, 
productEquality, 
cumulativity, 
isectEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].  \mforall{}[i:\mBbbN{}].
    (<s(rho)>  \mmember{}  I+i,s(phi(rho))  j{}\mrightarrow{}  Gamma,  phi)
Date html generated:
2020_05_20-PM-04_07_32
Last ObjectModification:
2020_04_17-PM-01_09_40
Theory : cubical!type!theory
Home
Index