Nuprl Lemma : context-map-lemma1

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[I:fset(ℕ)]. ∀[rho:Gamma(I)]. ∀[i:ℕ].  (<s(rho)> ∈ I+i,s(phi(rho)) j⟶ Gamma, phi)


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-subset: I,psi face-presheaf: 𝔽 context-map: <rho> cube_set_map: A ⟶ B cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-s: s add-name: I+i fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a subtype_rel: A ⊆B squash: T prop: cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt guard: {T} formal-cube: formal-cube(I) cubical-term-at: u(a) context-map: <rho> csm-ap: (s)x functor-arrow: arrow(F) cube-set-restriction: f(s) names-hom: I ⟶ J true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  istype-nat I_cube_wf fset_wf nat_wf istype-cubical-term face-type_wf cubical_set_wf context-subset-map formal-cube_wf1 add-name_wf context-map_wf cube-set-restriction_wf nc-s_wf f-subset-add-name cube_set_map_wf squash_wf true_wf cubical-subset-is-context-subset face-presheaf_wf2 cubical-term-at_wf subtype_rel_self context-subset_wf cubical-term-equal csm-ap-term_wf csm-face-type I_cube_pair_redex_lemma csm-ap-term-at cubical-type-at_wf_face-type names-hom_wf equal_wf istype-universe cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cube-set-restriction-comp subtype_rel-equal iff_weakening_equal cubical-term-at-morph nh-comp_wf face-type-ap-morph cube_set_restriction_pair_lemma fl-morph_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isect_memberEquality_alt isectElimination thin hypothesisEquality isectIsTypeImplies inhabitedIsType universeIsType instantiate dependent_functionElimination because_Cache independent_isectElimination applyEquality lambdaEquality_alt hyp_replacement imageElimination imageMemberEquality baseClosed Error :memTop,  functionExtensionality natural_numberEquality universeEquality productElimination independent_functionElimination productEquality cumulativity isectEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].  \mforall{}[i:\mBbbN{}].
    (<s(rho)>  \mmember{}  I+i,s(phi(rho))  j{}\mrightarrow{}  Gamma,  phi)



Date html generated: 2020_05_20-PM-04_07_32
Last ObjectModification: 2020_04_17-PM-01_09_40

Theory : cubical!type!theory


Home Index