Nuprl Lemma : csm-canonical-section-face-type-0

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[phi:𝔽(I)].
  ((canonical-section(();𝔽;I+i;⋅;s(phi)))<(i0)> canonical-section(();𝔽;I;⋅;phi) ∈ {formal-cube(I) ⊢ _:𝔽})


Proof




Definitions occuring in Statement :  face-type: 𝔽 csm-ap-term: (t)s canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-term: {X ⊢ _:A} face-presheaf: 𝔽 context-map: <rho> trivial-cube-set: () formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) nc-0: (i0) nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: it: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a nat: so_apply: x[s] all: x:A. B[x] unit: Unit I_cube: A(I) functor-ob: ob(F) pi1: fst(t) trivial-cube-set: () face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) top: Top true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice not: ¬A false: False bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2)
Lemmas referenced :  uall_wf squash_wf true_wf fset_wf nat_wf set_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self I_cube_wf face-presheaf_wf small_cubical_set_subtype equal_wf cubical-term_wf formal-cube_wf face-type_wf csm-canonical-section-face-type add-name_wf nc-0_wf nc-s_wf f-subset-add-name canonical-section_wf trivial-cube-set_wf it_wf subtype_rel_self cubical-type-at_wf_face-type subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf context-map_wf csm-face-type iff_weakening_equal face-type-at Error :cube_set_restriction_pair_lemma,  lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf fl-morph-comp2 fl-morph_wf names-hom_wf s-comp-nc-0 bounded-lattice-hom_wf bdd-distributive-lattice_wf fl-morph-id
Rules used in proof :  cut applyEquality instantiate sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry functionEquality cumulativity universeEquality sqequalRule because_Cache intEquality independent_isectElimination natural_numberEquality setElimination rename dependent_functionElimination isect_memberEquality voidElimination voidEquality imageMemberEquality baseClosed setEquality productElimination independent_functionElimination isect_memberFormation axiomEquality productEquality lambdaFormation

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[phi:\mBbbF{}(I)].
    ((canonical-section(();\mBbbF{};I+i;\mcdot{};s(phi)))<(i0)>  =  canonical-section(();\mBbbF{};I;\mcdot{};phi))



Date html generated: 2018_05_23-AM-09_24_36
Last ObjectModification: 2017_11_12-PM-05_48_00

Theory : cubical!type!theory


Home Index