Nuprl Lemma : csm-canonical-section-face-type-1
∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[phi:𝔽(I)].
  ((canonical-section(();𝔽;I+i;⋅;s(phi)))<(i1)> = canonical-section(();𝔽;I;⋅;phi) ∈ {formal-cube(I) ⊢ _:𝔽})
Proof
Definitions occuring in Statement : 
face-type: 𝔽, 
csm-ap-term: (t)s, 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
cubical-term: {X ⊢ _:A}, 
face-presheaf: 𝔽, 
context-map: <rho>, 
trivial-cube-set: (), 
formal-cube: formal-cube(I), 
cube-set-restriction: f(s), 
I_cube: A(I), 
nc-1: (i1), 
nc-s: s, 
add-name: I+i, 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
it: ⋅, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
set: {x:A| B[x]} , 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
squash: ↓T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
nat: ℕ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
unit: Unit, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
trivial-cube-set: (), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
cubical-type-at: A(a), 
face-type: 𝔽, 
constant-cubical-type: (X), 
top: Top, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
not: ¬A, 
false: False, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2)
Lemmas referenced : 
uall_wf, 
squash_wf, 
true_wf, 
fset_wf, 
nat_wf, 
set_wf, 
not_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
I_cube_wf, 
face-presheaf_wf, 
small_cubical_set_subtype, 
equal_wf, 
cubical-term_wf, 
formal-cube_wf, 
face-type_wf, 
csm-canonical-section-face-type, 
add-name_wf, 
nc-1_wf, 
nc-s_wf, 
f-subset-add-name, 
canonical-section_wf, 
trivial-cube-set_wf, 
it_wf, 
subtype_rel_self, 
cubical-type-at_wf_face-type, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
context-map_wf, 
csm-face-type, 
iff_weakening_equal, 
face-type-at, 
Error :cube_set_restriction_pair_lemma, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fl-morph-comp2, 
fl-morph_wf, 
names-hom_wf, 
s-comp-nc-1, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
fl-morph-id
Rules used in proof : 
cut, 
applyEquality, 
instantiate, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
sqequalRule, 
because_Cache, 
intEquality, 
independent_isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
setEquality, 
productElimination, 
independent_functionElimination, 
isect_memberFormation, 
axiomEquality, 
productEquality, 
lambdaFormation
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[phi:\mBbbF{}(I)].
    ((canonical-section(();\mBbbF{};I+i;\mcdot{};s(phi)))<(i1)>  =  canonical-section(();\mBbbF{};I;\mcdot{};phi))
Date html generated:
2018_05_23-AM-09_24_46
Last ObjectModification:
2017_11_12-PM-05_47_51
Theory : cubical!type!theory
Home
Index