Nuprl Lemma : csm-equiv-path2

[G:j⊢]. ∀[A,B:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[cB:G +⊢ Compositon(B)]. ∀[f:{G ⊢ _:Equiv(A;B)}]. ∀[H:j⊢].
[s:H j⟶ G].
  ((equiv-path2(G;A;B;cA;cB;f))s+
  equiv-path2(H;(A)s;(B)s;(cA)s;(cB)s;(f)s)
  ∈ H.𝕀 +⊢ Compositon(equiv-path1(H;(A)s;(B)s;(f)s)))


Proof




Definitions occuring in Statement :  equiv-path2: equiv-path2(G;A;B;cA;cB;f) equiv-path1: equiv-path1(G;A;B;f) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) cubical-equiv: Equiv(T;A) interval-type: 𝕀 csm+: tau+ cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] equiv-path2: equiv-path2(G;A;B;cA;cB;f) member: t ∈ T cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) subtype_rel: A ⊆B all: x:A. B[x] uimplies: supposing a guard: {T} cubical-type: {X ⊢ _} csm+: tau+ csm-ap: (s)x csm-comp: F csm-adjoin: (s;u) pi1: fst(t) compose: g csm-ap-term: (t)s pi2: snd(t) csm-comp-structure: (cA)tau equiv-path1: equiv-path1(G;A;B;f) and: P ∧ Q
Lemmas referenced :  csm-glue-comp cube-context-adjoin_wf interval-type_wf csm-ap-type_wf cc-fst_wf_interval face-or_wf face-zero_wf cc-snd_wf face-one_wf cube_set_map_wf istype-cubical-term cubical-equiv_wf composition-structure_wf cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf subset-cubical-type context-subset_wf context-subset-is-subset face-type_wf case-type_wf same-cubical-type-zero-and-one face-0_wf csm-case-type csm-face-or csm-face-zero csm-face-one csm-case-type-comp case-type-comp-disjoint csm-comp-structure_wf cube_set_map_cumulativity-i-j composition-structure-subset face-term-0-and-1 csm-cubical-equiv-by-cases q-csm+ glue-comp_wf2 csm-comp-structure_wf2 glue-type_wf equiv-fun_wf sub_cubical_set_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin instantiate hypothesis hypothesisEquality Error :memTop,  equalityTransitivity equalitySymmetry because_Cache universeIsType inhabitedIsType applyEquality lambdaFormation_alt independent_isectElimination dependent_functionElimination setElimination rename productElimination dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype applyLambdaEquality lambdaEquality_alt hyp_replacement

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[cB:G  +\mvdash{}  Compositon(B)].
\mforall{}[f:\{G  \mvdash{}  \_:Equiv(A;B)\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((equiv-path2(G;A;B;cA;cB;f))s+  =  equiv-path2(H;(A)s;(B)s;(cA)s;(cB)s;(f)s))



Date html generated: 2020_05_20-PM-07_28_18
Last ObjectModification: 2020_04_28-PM-10_05_07

Theory : cubical!type!theory


Home Index