Nuprl Lemma : csm-equiv-path2
∀[G:j⊢]. ∀[A,B:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[cB:G +⊢ Compositon(B)]. ∀[f:{G ⊢ _:Equiv(A;B)}]. ∀[H:j⊢].
∀[s:H j⟶ G].
  ((equiv-path2(G;A;B;cA;cB;f))s+
  = equiv-path2(H;(A)s;(B)s;(cA)s;(cB)s;(f)s)
  ∈ H.𝕀 +⊢ Compositon(equiv-path1(H;(A)s;(B)s;(f)s)))
Proof
Definitions occuring in Statement : 
equiv-path2: equiv-path2(G;A;B;cA;cB;f)
, 
equiv-path1: equiv-path1(G;A;B;f)
, 
csm-comp-structure: (cA)tau
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
cubical-equiv: Equiv(T;A)
, 
interval-type: 𝕀
, 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equiv-path2: equiv-path2(G;A;B;cA;cB;f)
, 
member: t ∈ T
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
cubical-type: {X ⊢ _}
, 
csm+: tau+
, 
csm-ap: (s)x
, 
csm-comp: G o F
, 
csm-adjoin: (s;u)
, 
pi1: fst(t)
, 
compose: f o g
, 
csm-ap-term: (t)s
, 
pi2: snd(t)
, 
csm-comp-structure: (cA)tau
, 
equiv-path1: equiv-path1(G;A;B;f)
, 
and: P ∧ Q
Lemmas referenced : 
csm-glue-comp, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-ap-type_wf, 
cc-fst_wf_interval, 
face-or_wf, 
face-zero_wf, 
cc-snd_wf, 
face-one_wf, 
cube_set_map_wf, 
istype-cubical-term, 
cubical-equiv_wf, 
composition-structure_wf, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cubical_set_wf, 
subset-cubical-type, 
context-subset_wf, 
context-subset-is-subset, 
face-type_wf, 
case-type_wf, 
same-cubical-type-zero-and-one, 
face-0_wf, 
csm-case-type, 
csm-face-or, 
csm-face-zero, 
csm-face-one, 
csm-case-type-comp, 
case-type-comp-disjoint, 
csm-comp-structure_wf, 
cube_set_map_cumulativity-i-j, 
composition-structure-subset, 
face-term-0-and-1, 
csm-cubical-equiv-by-cases, 
q-csm+, 
glue-comp_wf2, 
csm-comp-structure_wf2, 
glue-type_wf, 
equiv-fun_wf, 
sub_cubical_set_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
hypothesis, 
hypothesisEquality, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeIsType, 
inhabitedIsType, 
applyEquality, 
lambdaFormation_alt, 
independent_isectElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
productElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
applyLambdaEquality, 
lambdaEquality_alt, 
hyp_replacement
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[cB:G  +\mvdash{}  Compositon(B)].
\mforall{}[f:\{G  \mvdash{}  \_:Equiv(A;B)\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((equiv-path2(G;A;B;cA;cB;f))s+  =  equiv-path2(H;(A)s;(B)s;(cA)s;(cB)s;(f)s))
Date html generated:
2020_05_20-PM-07_28_18
Last ObjectModification:
2020_04_28-PM-10_05_07
Theory : cubical!type!theory
Home
Index