Nuprl Lemma : csm-glue-comp-agrees

The type (not displayed) of the equality in this lemma 
is composition-structure{i:l}(G, psi; T)
This means that in "extent" psi, when ⌜G ⊢ Glue [psi ⊢→ (T;f)] T ∈ {G, psi ⊢ _}⌝the
composition for ⌜Glue [psi ⊢→ (T;f)] A⌝ is the same as the composition for T.

This property of the compostion for Glue is used in construction of the 
composition for c𝕌  (the cubiucal universe type).⋅

[H,G:j⊢]. ∀[tau:H j⟶ G]. ∀[A:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[psi:{G ⊢ _:𝔽}]. ∀[T:{G, psi ⊢ _}].
[cT:G, psi +⊢ Compositon(T)]. ∀[f:{G, psi ⊢ _:Equiv(T;A)}].
  (comp(Glue [psi ⊢→ (T, f)] A) )tau (cT)tau ∈ H ⊢ Compositon((T)tau) supposing H ⊢ (1(𝔽 (psi)tau)


Proof




Definitions occuring in Statement :  glue-comp: comp(Glue [phi ⊢→ (T, f)] A)  csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) cubical-equiv: Equiv(T;A) face-term-implies: Gamma ⊢ (phi  psi) context-subset: Gamma, phi face-1: 1(𝔽) face-type: 𝔽 csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B csm-comp-structure: (cA)tau cubical-type: {X ⊢ _} csm-ap-term: (t)s interval-type: 𝕀 csm-comp: F csm-ap-type: (AF)s compose: g csm-ap: (s)x prop:
Lemmas referenced :  csm-glue-comp csm-comp-structure_wf context-subset_wf csm-ap-term_wf face-type_wf csm-face-type context-subset-map cubical_set_cumulativity-i-j cube_set_map_cumulativity-i-j glue-comp-agrees2 csm-ap-type_wf face-term-implies_wf face-1_wf istype-cubical-term cubical-equiv_wf thin-context-subset composition-structure_wf cubical-type_wf cube_set_map_wf cubical_set_wf cubical-term-eqcd csm-cubical-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache Error :memTop,  hypothesisEquality hypothesis instantiate applyEquality equalityTransitivity equalitySymmetry setElimination rename productElimination independent_isectElimination universeIsType inhabitedIsType lambdaEquality_alt hyp_replacement

Latex:
\mforall{}[H,G:j\mvdash{}].  \mforall{}[tau:H  j{}\mrightarrow{}  G].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[psi:\{G  \mvdash{}  \_:\mBbbF{}\}].
\mforall{}[T:\{G,  psi  \mvdash{}  \_\}].  \mforall{}[cT:G,  psi  +\mvdash{}  Compositon(T)].  \mforall{}[f:\{G,  psi  \mvdash{}  \_:Equiv(T;A)\}].
    (comp(Glue  [psi  \mvdash{}\mrightarrow{}  (T,  f)]  A)  )tau  =  (cT)tau  supposing  H  \mvdash{}  (1(\mBbbF{})  {}\mRightarrow{}  (psi)tau)



Date html generated: 2020_05_20-PM-07_04_31
Last ObjectModification: 2020_04_21-PM-11_55_31

Theory : cubical!type!theory


Home Index