Nuprl Lemma : csm-m-comp-0

[H:j⊢]. ([0(𝕀)] [0(𝕀)] ∈ H.𝕀 ij⟶ H.𝕀)


Proof




Definitions occuring in Statement :  csm-m: m interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] cube-context-adjoin: X.A csm-m: m interval-0: 0(𝕀) csm-id-adjoin: [u] csm-comp: F cc-fst: p compose: g pi1: fst(t) csm-adjoin: (s;u) csm-ap: (s)x csm-id: 1(X) cc-adjoin-cube: (v;u) uimplies: supposing a interval-presheaf: 𝕀 guard: {T} and: P ∧ Q squash: T DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: so_apply: x[s] true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q dM0: 0
Lemmas referenced :  cubical_set_wf cube-context-adjoin_wf interval-type_wf cubical_set_cumulativity-i-j csm-comp_wf cc-fst_wf csm-id-adjoin_wf-interval-0 csm-m_wf I_cube_pair_redex_lemma cube_set_restriction_pair_lemma istype-cubical-type-at I_cube_wf fset_wf nat_wf csm-equal2 interval-type-at lattice_properties dM_wf bdd-distributive-lattice-subtype-lattice DeMorgan-algebra-subtype subtype_rel_transitivity DeMorgan-algebra_wf bdd-distributive-lattice_wf lattice_wf equal_wf lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM0_wf iff_weakening_equal lattice-meet-0 bdd-distributive-lattice-subtype-bdd-lattice bdd-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut instantiate introduction extract_by_obid hypothesis thin sqequalHypSubstitution isectElimination hypothesisEquality applyEquality sqequalRule because_Cache lambdaFormation_alt dependent_functionElimination Error :memTop,  productElimination dependent_pairEquality_alt independent_isectElimination equalitySymmetry lambdaEquality_alt imageElimination productEquality cumulativity isectEquality natural_numberEquality imageMemberEquality baseClosed equalityTransitivity independent_functionElimination

Latex:
\mforall{}[H:j\mvdash{}].  ([0(\mBbbI{})]  o  p  =  m  o  [0(\mBbbI{})])



Date html generated: 2020_05_20-PM-04_42_38
Last ObjectModification: 2020_04_13-PM-00_59_52

Theory : cubical!type!theory


Home Index