Nuprl Lemma : csm-m-comp-0
∀[H:j⊢]. ([0(𝕀)] o p = m o [0(𝕀)] ∈ H.𝕀 ij⟶ H.𝕀)
Proof
Definitions occuring in Statement : 
csm-m: m
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
cube-context-adjoin: X.A
, 
csm-m: m
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-comp: G o F
, 
cc-fst: p
, 
compose: f o g
, 
pi1: fst(t)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
csm-id: 1(X)
, 
cc-adjoin-cube: (v;u)
, 
uimplies: b supposing a
, 
interval-presheaf: 𝕀
, 
guard: {T}
, 
and: P ∧ Q
, 
squash: ↓T
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
dM0: 0
Lemmas referenced : 
cubical_set_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical_set_cumulativity-i-j, 
csm-comp_wf, 
cc-fst_wf, 
csm-id-adjoin_wf-interval-0, 
csm-m_wf, 
I_cube_pair_redex_lemma, 
cube_set_restriction_pair_lemma, 
istype-cubical-type-at, 
I_cube_wf, 
fset_wf, 
nat_wf, 
csm-equal2, 
interval-type-at, 
lattice_properties, 
dM_wf, 
bdd-distributive-lattice-subtype-lattice, 
DeMorgan-algebra-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra_wf, 
bdd-distributive-lattice_wf, 
lattice_wf, 
equal_wf, 
lattice-point_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM0_wf, 
iff_weakening_equal, 
lattice-meet-0, 
bdd-distributive-lattice-subtype-bdd-lattice, 
bdd-lattice_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
lambdaFormation_alt, 
dependent_functionElimination, 
Error :memTop, 
productElimination, 
dependent_pairEquality_alt, 
independent_isectElimination, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
productEquality, 
cumulativity, 
isectEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
independent_functionElimination
Latex:
\mforall{}[H:j\mvdash{}].  ([0(\mBbbI{})]  o  p  =  m  o  [0(\mBbbI{})])
Date html generated:
2020_05_20-PM-04_42_38
Last ObjectModification:
2020_04_13-PM-00_59_52
Theory : cubical!type!theory
Home
Index