Nuprl Lemma : csm-transport
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[a:{Gamma ⊢ _:(A)[0(𝕀)]}]. ∀[H:j⊢]. ∀[s:H j⟶ Gamma].
  ((transport(Gamma;a))s = transport(H;(a)s) ∈ {H ⊢ _:((A)[1(𝕀)])s})
Proof
Definitions occuring in Statement : 
transport: transport(Gamma;a), 
csm-composition: (comp)sigma, 
composition-op: Gamma ⊢ CompOp(A), 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
csm+: tau+, 
csm-id-adjoin: [u], 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
transport: transport(Gamma;a), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
prop: ℙ, 
squash: ↓T, 
true: True, 
cubical-type: {X ⊢ _}, 
interval-0: 0(𝕀), 
csm-id-adjoin: [u], 
csm-ap-type: (AF)s, 
interval-type: 𝕀, 
csm+: tau+, 
csm-ap: (s)x, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
cc-snd: q, 
cc-fst: p, 
constant-cubical-type: (X), 
csm-comp: G o F, 
pi2: snd(t), 
compose: f o g, 
pi1: fst(t), 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
cat-ob: cat-ob(C), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-arrow: cat-arrow(C), 
type-cat: TypeCat, 
all: ∀x:A. B[x], 
names-hom: I ⟶ J, 
cat-comp: cat-comp(C), 
interval-1: 1(𝕀)
Lemmas referenced : 
composition-term-uniformity, 
face-0_wf, 
empty-context-subset-lemma4, 
interval-type_wf, 
empty-context-subset-lemma3, 
subset-cubical-term, 
context-subset_wf, 
context-subset-is-subset, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
csm-id-adjoin_wf-interval-0, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-term_wf, 
cubical-type-cumulativity2, 
csm-id-adjoin_wf-interval-1, 
cube_set_map_wf, 
cubical_set_cumulativity-i-j, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf, 
csm-face-0, 
csm-ap-term_wf, 
csm-context-subset-subtype2, 
csm-discrete-cubical-term, 
transport_wf, 
csm+_wf_interval, 
subtype_rel_self, 
csm-composition_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
equalityIstype, 
inhabitedIsType, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
instantiate, 
sqequalRule, 
hyp_replacement, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
setElimination, 
rename, 
productElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].  \mforall{}[a:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})]\}].  \mforall{}[H:j\mvdash{}].
\mforall{}[s:H  j{}\mrightarrow{}  Gamma].
    ((transport(Gamma;a))s  =  transport(H;(a)s))
Date html generated:
2020_05_20-PM-04_25_56
Last ObjectModification:
2020_04_10-PM-11_08_51
Theory : cubical!type!theory
Home
Index