Nuprl Lemma : cubical-path-condition-0

[I:fset(ℕ)]. ∀[Gamma,A,i,rho,u,a0:Top].  cubical-path-condition(Gamma;A;I;i;rho;0;u;a0)


Proof




Definitions occuring in Statement :  cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) face_lattice: face_lattice(I) lattice-0: 0 fset: fset(T) nat: uall: [x:A]. B[x] top: Top
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] name-morph-satisfies: (psi f) 1 squash: T uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q implies:  Q not: ¬A false: False
Lemmas referenced :  I_cube_wf cubical-subset_wf lattice-0_wf face_lattice_wf fset_wf nat_wf top_wf cubical-subset-I_cube-member bdd-distributive-lattice_wf subtype_rel_self names_wf assert_wf fset-antichain_wf union-deq_wf names-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf equal_wf squash_wf true_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf fl-morph-0 iff_weakening_equal face-lattice-0-not-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis applyEquality sqequalRule lambdaEquality setElimination rename setEquality unionEquality productEquality productElimination imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate cumulativity independent_isectElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination voidElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[Gamma,A,i,rho,u,a0:Top].    cubical-path-condition(Gamma;A;I;i;rho;0;u;a0)



Date html generated: 2017_10_05-AM-02_19_48
Last ObjectModification: 2017_07_28-AM-10_19_23

Theory : cubical!type!theory


Home Index